In this lecture, we will pave a stepping stone for our subsequent discussion on surface integrals by discussing a topic that is interesting in its own right: the relationship between the area of a planar region embedded in \mathbb{R}^3 and the area of its projection onto the xy-plane.

1 Projection of a Parallelogram

Let us start with the following problem. In \mathbb{R}^3, we are given a parallelogram g that is in a plane ρ with a normal vector u. Now, project g onto the xy-plane, which gives us another parallelogram g_{xy}; see the figure below. Denote by A the area of g, and by A_{xy} the area of g_{xy}. We want to explore the relationship between A and A_{xy}.

Denote by γ the angle between the directions of u and k (i.e., the positive z-direction). Next, we prove a very neat result:

Lemma 1. $A_{xy} = A \cdot |\cos \gamma|$.

Proof. If $A = 0$ (i.e., g degenerates into a point), then A_{xy} is trivially 0, in which case the lemma is obviously true. Next, we consider that $A \neq 0$.

Consider first $\gamma \in [0, \pi/2]$. Let a and b be the vectors corresponding to the two directed segments as shown in the above figure. Let a' and b' be the projections of a and b onto the xy-plane, respectively. If we write out the components of a and b as:

$$a = [x_1, y_1, z_1]$$
$$b = [x_2, y_2, z_2]$$

$$A_{xy} = a' \cdot b' = a' \cdot b = |a' \cdot b|$$

where a' and b' are the projections of a and b onto the xy-plane, respectively. Since $\gamma \in [0, \pi/2]$, we have:

$$|\cos \gamma| = \cos \gamma$$

Therefore, we have:

$$A_{xy} = A \cdot |\cos \gamma|$$
then we have

\[a' = [x_1, y_1, 0] \]
\[b' = [x_2, y_2, 0]. \]

We know that the areas of \(g \) and \(g_{xy} \) are

\[A = |a \times b| \]
\[A_{xy} = |a' \times b'|. \]

Define \(c = a \times b \) and \(c' = a' \times b' \). By definition of cross product, we know:

\[c = [y_1 z_2 - z_1 y_2, z_1 x_2 - x_1 z_2, x_1 y_2 - y_1 x_2] \]
\[c' = [0, 0, x_1 y_2 - y_1 x_2]. \]

The directions of \(c \) and \(c' \) are shown in the above figure. Note that \(\gamma \) is also the angle between \(c \) and \(c' \).

We thus have:

\[A = |c| \]
\[A_{xy} = |c'|. \]

If \(c' = 0 \), then it means that \(a' \) and \(b' \) have exactly the same or opposite directions, which further implies that \(\gamma = \pi/2 \). In this case, we trivially have \(A_{xy} = 0 = A \cos \gamma \). If \(c' \neq 0 \), we have

\[\cos \gamma = \frac{c \cdot c'}{|c||c'|} = \frac{(x_1 y_2 - y_1 x_2)^2}{|c||c'|} = \frac{|c'|^2}{|c||c'|} = \frac{|c'|}{|c|} = \frac{A_{xy}}{A} \]

which is precisely what we want to prove.

For the case where \(\gamma \in [\pi/2, \pi] \), let \(v = -u \). The angle between the directions of \(v \) and \(k \) is within \([\pi/2, \pi]\). Now we can apply the above argument with respect to the normal vector \(v \) to establish the lemma.

\[\square \]

Example 1. Consider the plane \(\rho \) given by \(x + 2y + 3z = 4 \). Let \(D \) a rectangle on the xy-plane with area 1, and \(D' \) the projection of \(D \) onto \(\rho \). What is the area of \(D' \)?

Solution. A normal vector of \(\rho \) is \(u = [1, 2, 3] \). Let \(\gamma \) be the angle between \(u \) and \(k = [0, 0, 1] \). We know that \(\cos \gamma = \frac{u \cdot k}{|u||k|} = \frac{3}{\sqrt{14}} \). Hence, by Lemma 1, the area of \(D' \) equals \(\text{area}(D)/\cos \gamma = \sqrt{14}/3 \).

\[\square \]

2 Projection of Any Planar Region

We now generalize Lemma 1. In \(\mathbb{R}^3 \), we are given an arbitrary region \(D \) that is in a plane \(\rho \) with a normal vector \(u \). Suppose that the boundary of \(D \) is a smooth curve. Now, project \(D \) onto the xy-plane, which gives us another region \(D_{xy} \); see the figure below.
Denote by \(\gamma \) the angle between the directions of \(\mathbf{u} \) and \(\mathbf{k} \). In general, we still have:

Lemma 2. \(\text{area}(D_{xy}) = \text{area}(D) \cdot |\cos \gamma| \).

We will not prove the lemma formally, but its key idea is easy to grasp. Imagine that we approximate \(D \) as the union of a huge number of very small disjoint parallelograms, and project all those parallelograms onto the xy-plane. The union of those parallelograms’ projections approximates \(D_{xy} \). Then, by Lemma 1, there is a \(\cos \gamma \) factor between the areas of each parallelogram and its projection, which thus gives Lemma 2.

Example 2. Consider the plane \(\rho \) given by \(x + 2y + 3z = 4 \). Let \(D \) be a circle on the xy-plane with radius 1, and \(D' \) the projection of \(D \) onto \(\rho \). What is the area of \(D' \)?

Solution. A normal vector of \(\rho \) is \(\mathbf{u} = [1, 2, 3] \). Let \(\gamma \) be the angle between \(\mathbf{u} \) and \(\mathbf{k} = [0, 0, 1] \). We know that \(\cos \gamma = \frac{\mathbf{u} \cdot \mathbf{k}}{||\mathbf{u}|| ||\mathbf{k}||} = \frac{3}{\sqrt{14}} \). Hence, by Lemma 2, the area of \(D' \) equals \(\frac{\text{area}(D)}{\cos \gamma} = \frac{\sqrt{14} \pi}{3} \). \(\square \)