Exercises: Dot Product and Cross Product

Problem 1. Give the result of $\mathbf{a} \cdot \mathbf{b}$ for each of the following:

1. $\mathbf{a} = [1, 2], \mathbf{b} = [2, 5]$
2. $\mathbf{a} = [1, 2, 3], \mathbf{b} = [2, 5, -7]$

Problem 2. Give the result of $\mathbf{a} \times \mathbf{b}$ for each of the following:

1. $\mathbf{a} = [1, 2, 3], \mathbf{b} = [3, 2, 1]$
2. $\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}, \mathbf{b} = [3, 2, 1]$

Problem 3. In each of the following, you are given two vectors $\mathbf{a} \cdot \mathbf{b}$. Let γ be the angle between the two vectors’ directions. Give the value of $\cos \gamma$.

1. $\mathbf{a} = [1, 2], \mathbf{b} = [2, 5]$
2. $\mathbf{a} = [1, 2, 3], \mathbf{b} = [3, 2, 1]$

Problem 4. This exercise explores the usage of dot product for calculation of projection lengths. Consider points $P(1, 2, 3), A(2, -1, 4), B(3, 2, 5)$. Let ℓ be the line passing P and A. Now, let us project point B onto ℓ; denote by C the projection. Calculate the distance between P and C.

Problem 5. Let $\overrightarrow{P, A}, \overrightarrow{P, B},$ and $\overrightarrow{P, C}$ be directed segments that are not in the same plane. They determine a parallelepiped as shown below:

Suppose that $\overrightarrow{P, A}, \overrightarrow{P, B},$ and $\overrightarrow{P, C}$ are instantiations of vectors $\mathbf{a}, \mathbf{b},$ and $\mathbf{c},$ respectively. Prove that the volume of the parallelepiped equals $|\langle \mathbf{a} \times \mathbf{b} \rangle \cdot \mathbf{c}|$.

Problem 6. Given a point $p(x, y, z)$ in \mathbb{R}^3, we use \mathbf{p} to denote the corresponding vector $[x, y, z]$. Let q be a point in \mathbb{R}^3, and \mathbf{v} be a non-zero 3d vector. Denote by ρ the plane passing q that is perpendicular to the direction of \mathbf{v}. Prove that for any p on ρ, it holds that $(\mathbf{p} - \mathbf{q}) \cdot \mathbf{v} = 0$.

Problem 7. Given a point $p(x, y, z)$ in \mathbb{R}^3, we use \mathbf{p} to denote the corresponding vector $[x, y, z]$. Let q be a point in \mathbb{R}^3, and \mathbf{u} be a unit 3d vector (i.e., $|\mathbf{u}| = 1$). Denote by ρ the plane passing q that is perpendicular to the direction of \mathbf{u}. Prove that for any p in \mathbb{R}^3, its distance to ρ equals $|\langle \mathbf{p} - \mathbf{q} \rangle \cdot \mathbf{u}|$.

Problem 8. Consider the plane $x + 2y + 3z = 4$ in \mathbb{R}^3. Calculate the distance from point $(0, 0, 0)$ to the plane.
Problem 9. Consider the line $x + 2y = 4$ in \mathbb{R}^2. Calculate the distance from point $(0, 0)$ to the line.

Problem 10. Given a point $p(x, y, z)$ in \mathbb{R}^3, we use p to denote the corresponding vector $[x, y, z]$. Let q be a fixed point in \mathbb{R}^3, and v a non-zero 3d vector. Given a real value s, $f(s)$ gives a point p in \mathbb{R}^3 such that $p = q + s \cdot v$. As s goes from $-\infty$ to ∞, what is the locus of $f(s)$?