Exercises: Eigenvalues, Eigenvectors, and Similarity Transformation

Problem 1. Find all the eigenvalues and eigenvectors of \(A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \).

Solution. Let \(\lambda \) be an eigenvalue of \(A \). To obtain all possible \(\lambda \), we solve the characteristic equation of \(A \) (let \(I \) be the 3 \(\times \) 3 identity matrix):

\[
\det(A - \lambda I) = 0 \Rightarrow
\begin{vmatrix}
-\lambda & 0 & 1 \\
0 & 1 - \lambda & 0 \\
1 & 0 & -\lambda
\end{vmatrix} = 0 \Rightarrow
(\lambda - 1)^2(\lambda + 1) = 0
\]

Hence, \(A \) has eigenvalues \(\lambda_1 = 1 \) and \(\lambda_2 = -1 \).

To find all the eigenvectors of \(\lambda_1 = 1 \), we need to solve \(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) from:

\[
(A - \lambda_1 I)x = 0 \Rightarrow
\begin{bmatrix}
-1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]

The set of solutions to the above equation—\(\text{EigenSpace}(\lambda_1) \)—includes all \(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) satisfying

\[
x_1 = u \\
x_2 = v \\
x_3 = u
\]

for any \(u, v \in \mathbb{R} \). Any non-zero vector in \(\text{EigenSpace}(\lambda_1) \) is an eigenvector of \(A \) corresponding to \(\lambda_1 \).

Similarly, to find all the eigenvectors of \(\lambda_2 = -1 \), we need to solve \(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \) from:

\[
(A - \lambda_2 I)x = 0 \Rightarrow
\begin{bmatrix}
1 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\]
The set of solutions to the above equation—\(\text{EigenSpace}(\lambda_2) \)—includes all \[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\] satisfying

\[
\begin{align*}
x_1 &= u \\
x_2 &= 0 \\
x_3 &= -u
\end{align*}
\]

for any \(u \in \mathbb{R} \). Any non-zero vector in \(\text{EigenSpace}(\lambda_2) \) is an eigenvector of \(A \) corresponding to \(\lambda_2 \).

Problem 2. Let \(A \) be an \(n \times n \) square matrix. Prove: \(A \) and \(A^T \) have exactly the same eigenvalues.

Proof. Recall that an eigenvalue of a matrix is a root of the matrix’s characteristic equation, which equates the matrix’s characteristic polynomial to 0. It suffices to show that the characteristic polynomial of \(A \) is the same as that of \(A^T \). In other words, we want to show that \(\det(A - \lambda I) = \det(A^T - \lambda I) \). This is true because \(A - \lambda I = (A^T - \lambda I)^T \). \(\square \)

Problem 3. Let \(A \) be an \(n \times n \) square matrix. Prove: \(A^{-1} \) exists if and only if 0 is not an eigenvalue of \(A \).

Proof. **If-Direction.** The objective is to show that if 0 is not an eigenvalue of \(A \), then \(A^{-1} \) exists, namely, the rank of \(A \) is \(n \). Suppose, on the contrary, that the rank of \(A \) is less than \(n \). Consider the linear system \(Ax = 0 \) where \(x \) is an \(n \times 1 \) matrix. The hypothesis that \(\text{rank} \ A < n \) indicates that the system has infinitely many solutions. In other words, there exists a non-zero \(x \) satisfying \(Ax = 0 \). This, however, indicates that 0 is an eigenvalue of \(A \), which is a contradiction.

Only-If Direction. The objective is to show that if \(A^{-1} \) exists, then 0 is not an eigenvalue of \(A \). The existence of \(A^{-1} \) means that the rank of \(A \) is \(n \), which in turn indicates that \(Ax = 0 \) has a unique solution \(x = 0 \). In other words, there is no non-zero \(x' \) satisfying \(Ax' = 0x' \), namely, 0 is not an eigenvalue of \(A \). \(\square \)

Problem 4. Let \(A \) be an \(n \times n \) square matrix such that \(A^{-1} \) exists. Prove: if \(\lambda \) is an eigenvalue of \(A \), then \(1/\lambda \) is an eigenvalue of \(A^{-1} \).

Proof. Since \(\lambda \) is an eigenvalue of \(A \), there is a non-zero \(n \times 1 \) matrix \(x \) satisfying

\[
\begin{align*}
Ax &= \lambda x \\
A^{-1}Ax &= \lambda A^{-1}x \\
x &= \lambda A^{-1}x \\
A^{-1}x &= (1/\lambda)x
\end{align*}
\]

which completes the proof. \(\square \)

Problem 5. Diagonalize the following matrix:

\[
A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}
\]

Solution. Matrix \(A \) has two eigenvalues \(\lambda_1 = 3 \) and \(\lambda_2 = 2 \). Since (i) \(A \) is a \(2 \times 2 \) matrix and (ii) it has 2 distinct eigenvalues, we can apply the diagonalization method we discussed in class.
Specifically, we obtain an arbitrary eigenvector v_1 of λ_1, say $v_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and, an arbitrary eigenvector v_2 of λ_2, say $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Then, we form:

$$Q = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}$$

by using v_1 and v_2 as the first and second columns, respectively. Q has the inverse:

$$Q^{-1} = \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$$

We thus obtain the following diagonalization of A:

$$A = Q \text{diag}[3, 2] Q^{-1}.$$

Problem 6. Consider again the matrix A in Problem 5. Calculate A^t for any integer $t \geq 1$.

Solution. We already know that A:

$$A = Q \text{diag}[3, 2] Q^{-1}.$$

Hence:

$$A^t = Q \text{diag}[3^t, 2^t] Q^{-1}$$

$$= \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 3^t & 0 \\ 0 & 2^t \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -3^t + 2^{t+1} & -3^t + 2^t \\ 2 \times 3^t - 2^{t+1} & 2 \times 3^t - 2^t \end{bmatrix}$$

Problem 7. Diagonalize the matrix A in Problem 1.

Solution. Recall that all symmetric matrices are diagonalizable. A is a 3×3 matrix. The key is to find three linearly independent eigenvectors.

From the solution of Problem 1, we know that A has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$. $\text{EigenSpace}(\lambda_1)$ includes all $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying $x_1 = u$, $x_2 = v$, $x_3 = u$ for any $u, v \in \mathbb{R}$. The vector space $\text{EigenSpace}(\lambda_1)$ has dimension 2 with a basis $\{v_1, v_2\}$ where $v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ (given by $u = 1, v = 0$) and $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ (given by $u = 0, v = 1$).
Similarly, \(\text{EigenSpace}(\lambda_2) \) includes all \[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]
satisfying
\[
\begin{align*}
x_1 &= u \\
x_2 &= 0 \\
x_3 &= -u
\end{align*}
\]
for any \(u \in \mathbb{R} \). The vector space \(\text{EigenSpace}(\lambda_2) \) has dimension 1 with a basis \(\{ v_3 \} \) where \(v_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \) (given by \(u = 1 \)).

So far, we have obtained three linearly independent eigenvectors \(v_1, v_2, v_3 \) of \(A \). We can then apply the diagonalization method exemplified in Problem 5 to diagonalize \(A \). Specifically, we form:

\[
Q = \begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & -1
\end{bmatrix}
\]

\(Q \) has the inverse:

\[
Q^{-1} = \begin{bmatrix}
1/2 & 0 & 1/2 \\
0 & 1 & 0 \\
1/2 & 0 & -1/2
\end{bmatrix}
\]

We thus obtain the following diagonalization of \(A \):

\[
A = Q \text{diag}[1, 1, -1] Q^{-1}.
\]