Exercises: Linear Systems and Matrix Inverse

Problem 1. Consider the following linear system:
\[
\begin{align*}
 x_1 + x_2 + x_3 + x_4 &= 1 \\
 3x_1 + x_2 + x_3 + x_4 &= a \\
 x_2 + 2x_3 + 2x_4 &= 3 \\
 5x_1 + 4x_2 + 3x_3 + 3x_4 &= a
\end{align*}
\]
Depending on the value of \(a \), when does the system have no solution, a unique solution, and infinitely many solutions?

Problem 2. Consider the following linear system:
\[
\begin{align*}
 2x_1 + x_2 + bx_3 &= 0 \\
 x_1 + x_2 + bx_3 &= 0 \\
 bx_1 + x_2 + 2x_3 &= 0
\end{align*}
\]
Depending on the value of \(b \), when does the system have no solution, a unique solution, and infinitely many solutions?

Problem 3. Use Cramer’s rule to solve the following linear system:
\[
\begin{align*}
 2x - 4y &= -24 \\
 5x + 2y &= 0
\end{align*}
\]

Problem 4. Compute the inverse of
\[
A = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 0 & 1 \\
 0 & 1 & 0
\end{bmatrix}
\]

Problem 5. Compute the inverse of
\[
A = \begin{bmatrix}
 1 & 2 & 1 \\
 -2 & -3 & 1 \\
 5 & 9 & 1
\end{bmatrix}
\]

Problem 6. Let \(A \) be an \(n \times n \) matrix. Also, let \(I \) be the \(n \times n \) identity matrix. Prove: if \(A^3 = 0 \), then
\[
(I - A)^{-1} = I + A + A^2.
\]

Problem 7. Consider:
\[
A = \begin{bmatrix}
 2 & 1 & b \\
 1 & 1 & b \\
 b & 1 & 2
\end{bmatrix}
\]
Under what values of \(b \) does \(A^{-1} \) exist?