ENGG1410F Tutorial Quadratic Forms

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Symmetric matrices have many important applications. Today we will see one of them: determining whether a quadratic expression is positive definite.

Consider the expression:

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3} \tag{1}
\end{equation*}
$$

Clearly, if $x_{1}=x_{2}=x_{3}=0$, then the above expression is 0 . We ask the question:

Is it true that the expressive is always positive for any $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \neq \mathbf{0}$?
If so, then the expression is positive definite.

Consider the expression:

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3} \tag{1}
\end{equation*}
$$

Clearly, if $x_{1}=x_{2}=x_{3}=0$, then the above expression is 0 . We ask the question:

Is it true that the expressive is always positive for any $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \neq \mathbf{0}$?
If so, then the expression is positive definite.
The same question can be asked about any quadratic expressions, e.g.:

$$
3 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}
$$

We can convert

$$
x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}
$$

into the following "neat form":

$$
\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)^{2}-2\left(-\sqrt{\frac{1}{6}} x_{1}-\sqrt{\frac{1}{6}} x_{2}+\sqrt{\frac{2}{3}} x_{3}\right)^{2}+\left(-x_{1}-x_{2}\right)^{2}
$$

We now know that the original expression is not positive definite, e.g., the solution $\left\{x_{1}, x_{2}, x_{3}\right\}$ to

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =0 \\
-\sqrt{\frac{1}{6}} x_{1}-\sqrt{\frac{1}{6}} x_{2}+\sqrt{\frac{2}{3}} x_{3} & =1 \\
-x_{1}-x_{2} & =0
\end{aligned}
$$

makes the expression negative.

Similarly, we can convert

$$
3 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}
$$

into the following "neat form":

$$
\frac{1}{6}\left(x_{1}+2 x_{2}+x_{3}\right)^{2}+\frac{3}{2}\left(-x_{1}+x_{3}\right)^{2}+\frac{4}{3}\left(x_{1}-x_{2}+x_{3}\right)^{2} .
$$

We now know that the original expression is positive definite.

But here is the question:

How to identify the above "neat" forms so that we can easily determine positive definiteness?

Next, we will give a systematic technique to do so, by resorting to a symmetric matrix.

First of all, observe:

$$
\begin{aligned}
& {\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } \\
= & a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{21} x_{2} x_{1}+ \\
& a_{22} x_{2}^{2}+a_{23} x_{2} x_{3}+a_{31} x_{3} x_{1}+a_{32} x_{3} x_{2}+a_{33} x_{3}^{2} .
\end{aligned}
$$

The matrix $\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is called the coefficient matrix of the quadratic expression.

For our technique to work, we require that the coefficient matrix should be symmetric!

Fortunately, every quadratic expression admits a symmetric coefficient matrix; see the next slide for an example.

$$
\begin{aligned}
& x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+8 x_{1} x_{3} \\
= & x_{1}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}-2 x_{2} x_{1}+2 x_{2}^{2}+4 x_{3} x_{1}-7 x_{3}^{2} \\
= & {\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{ccc}
1 & -2 & 4 \\
-2 & 2 & 0 \\
4 & 0 & -7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] . }
\end{aligned}
$$

Let $\boldsymbol{A}=\left[\begin{array}{ccc}1 & -2 & 4 \\ -2 & 2 & 0 \\ 4 & 0 & -7\end{array}\right]$.
\boldsymbol{A} has eigenvalues $\lambda_{1}=1, \lambda_{2}=-2, \lambda_{3}=2$.

As \boldsymbol{A} is symmetric, we know that it can be diagonalized into $\boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}$ where \boldsymbol{Q} is an orthogonal matrix, and $\boldsymbol{B}=\operatorname{diag}[1,-2,2]$. With this we obtain:

$$
\begin{aligned}
{\left[x_{1}, x_{2}, x_{3}\right] \boldsymbol{A}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[x_{1}, x_{2}, x_{3}\right] \boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
\left(\text { by } \boldsymbol{Q}^{-1}=\boldsymbol{Q}^{T}\right) & =\left[x_{1}, x_{2}, x_{3}\right] \boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{T}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left(\left[x_{1}, x_{2}, x_{3}\right] \boldsymbol{Q}\right) \boldsymbol{B}\left(\left[x_{1}, x_{2}, x_{3}\right] \boldsymbol{Q}\right)^{T}
\end{aligned}
$$

Let $\left[y_{1}, y_{2}, y_{3}\right]=\left[x_{1}, x_{2}, x_{3}\right] \boldsymbol{Q}$, then we can write the above as

$$
\left[y_{1}, y_{2}, y_{3}\right] \boldsymbol{B}\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=y_{1}^{2}-2 y_{2}^{2}+2 y_{3}^{2} .
$$

As we will see, this is the "neat form" we are looking for.

Recall that for the expression $x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}$,
$\boldsymbol{A}=\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1\end{array}\right]$ which equals $\boldsymbol{Q} \operatorname{diag}[1,-2,2] \boldsymbol{Q}^{-1}$ where

$$
\boldsymbol{Q}=\left[\begin{array}{ccc}
1 / \sqrt{3} & -\sqrt{1 / 6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & -\sqrt{1 / 6} & -1 \sqrt{2} \\
1 / \sqrt{3} & \sqrt{2 / 3} & 0
\end{array}\right]
$$

Accordingly:

$$
\begin{aligned}
& y_{1}=\left(x_{1}+x_{2}+x_{3}\right) / \sqrt{3} \\
& y_{2}=-\sqrt{1 / 6} \cdot x_{1}-\sqrt{1 / 6} \cdot x_{2}+\sqrt{2 / 3} \cdot x_{3} \\
& y_{3}=-\left(x_{1}+x_{2}\right) / \sqrt{2}
\end{aligned}
$$

This gives precisely the neat form in Slide 4.

Next, let us apply the technique to prove

$$
3 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}
$$

is positive definite.
First, write:

$$
\begin{aligned}
& 3 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3} \\
= & {\left[x_{1}, x_{2}, x_{3}\right]\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] . }
\end{aligned}
$$

Let $\boldsymbol{A}=\left[\begin{array}{ccc}3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3\end{array}\right]$.

Diagonalize \boldsymbol{A} into $\mathbf{Q B} \boldsymbol{Q}^{-1}$ where

$$
\begin{aligned}
\boldsymbol{Q} & =\left[\begin{array}{ccc}
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & -1 \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right] \\
\boldsymbol{B} & =\operatorname{diag}[1,3,4]
\end{aligned}
$$

Accordingly:

$$
\begin{aligned}
& y_{1}=\left(x_{1}+2 x_{2}+x_{3}\right) / \sqrt{6} \\
& y_{2}=\left(-x_{1}+x_{3}\right) / \sqrt{2} \\
& y_{3}=\left(x_{1}-x_{2}+x_{3}\right) / \sqrt{3}
\end{aligned}
$$

and

$$
\boldsymbol{A}=y_{1}^{2}+3 y_{2}^{2}+4 y_{3}^{2} .
$$

This gives precisely the neat form in Slide 5.

The above technique can be summarized into the following algorithm for deciding whether a quadratic expression is positive definite:
(1) Obtain the symmetric coefficient matrix \boldsymbol{A} of the expression.
(2) Obtain all the eigenvalues of \boldsymbol{A}.
(3) If all eigenvalues are positive, then the original expression is positive definite.
(9) Otherwise, not positive definite.

Remark 1: Although we have illustrated the algorithm for $n=3$ variables, the technique can be generalized in a straightforward manner to any n (in any case \boldsymbol{A} is an $n \times n$ matrix).

Remark 2: A symmetric $n \times n$ matrix \boldsymbol{A} is said to be positive definite if $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}>0$ for any $n \times 1$ vector \boldsymbol{x}. Our argument earlier showed that \boldsymbol{A} is positive definite if and only if all its eigenvalues are positive.

