ENGG1410-F Tutorial 7

Hao Xu

Department of Computer Science and Engineering The Chinese University of Hong Kong

Problem 1. Orthogonal set

Consider the following set S with three column vectors:

$$
\boldsymbol{S}=\left\{\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
0 \\
\frac{\sqrt{2}}{2}
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right\}
$$

Find all the possible $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ that makes S an orthogonal set.

Solution

For S to be orthogonal, the vectors in S must be mutually orthogonal to each other. We therefore have:

$$
\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
0 \\
\frac{\sqrt{2}}{2}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0 \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0
$$

which gives the following set of equations on variables x, y, and z :

$$
\begin{aligned}
-\frac{\sqrt{2}}{2} x+\frac{\sqrt{2}}{2} z & =0 \\
y & =0
\end{aligned}
$$

Solution-cont.

The set of solutions $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is:

$$
\boldsymbol{S}=\left\{\left.\left[\begin{array}{l}
t \\
0 \\
t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

Problem 2. Orthogonal matrix

Consider the following matrix:

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
-\frac{\sqrt{2}}{2} & 0 & x \\
0 & 1 & y \\
\frac{\sqrt{2}}{2} & 0 & z
\end{array}\right]
$$

Find all the possible $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ that makes \boldsymbol{A} an orthogonal matrix.

Recall that matrix \boldsymbol{A} is orthogonal if and only if both conditions below are satisfied:

- All column vectors are mutually orthogonal.
- All column vectors have unit length.

In Problem1, we have already obtained the set of $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ satisfying the first bullet(the orthogonal constraint):

$$
\boldsymbol{S}=\left\{\left.\left[\begin{array}{l}
t \\
0 \\
t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

To satisfy the "unit length" constraint, we need:

$$
\begin{aligned}
\sqrt{x^{2}+y^{2}+z^{2}} & =1 \Rightarrow \\
t^{2}+t^{2} & =1 \Rightarrow \\
t & =\frac{\sqrt{2}}{2} \text { or }-\frac{\sqrt{2}}{2}
\end{aligned}
$$

Hence, there are only two $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ that can make A orthogonal:

$$
\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
0 \\
\frac{\sqrt{2}}{2}
\end{array}\right] \text { and }\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
0 \\
-\frac{\sqrt{2}}{2}
\end{array}\right]
$$

Problem 3. Symmetric Matrix Diagonalization

Diagonalize the following symmetric matrix:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

into $\boldsymbol{Q B} \boldsymbol{Q}^{-1}$ where \boldsymbol{B} is a diagonal matrix, and \boldsymbol{Q} is an orthogonal matrix. You only need to give the details of \boldsymbol{Q} and \boldsymbol{B}.

Hint: \boldsymbol{A} has only two eigenvalues: $\lambda_{1}=0$ and $\lambda_{2}=3$.

Solution

We aim to obtain three eigenvectors of \boldsymbol{A}, denoted as $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$, and \boldsymbol{v}_{3} respectively, that are (i) mutually orthogonal to each other and (ii) have lengths 1.
We first calculate the eigenspace of λ_{1} :

$$
\text { EigenSpace }\left(\lambda_{1}\right)=\left\{\left.\left[\begin{array}{c}
u \\
v \\
-u-v
\end{array}\right] \right\rvert\, u, v \in \mathbb{R}\right\}
$$

EigenSpace $\left(\lambda_{1}\right)$ has dimension 2. We will first take from the set two eigenvectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ that are orthogonal to each other.
But how?

Solution-cont.

We first set \boldsymbol{x}_{1} to an arbitrary non-zero vector, e.g., $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$. Regarding
$\boldsymbol{x}_{2}=\left[\begin{array}{c}u \\ v \\ -u-v\end{array}\right]$, we ensure orthogonality between \boldsymbol{x}_{1} and \boldsymbol{x}_{2} by
requiring their dot product to be 0 :

$$
\begin{aligned}
{\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
u \\
v \\
-u-v
\end{array}\right] } & =0 \\
u+u+v & =0 \\
2 u+v & =0
\end{aligned}
$$

Any non-zero vector satisfying the above equation and in the form of $\left[\begin{array}{c}u \\ v \\ -u-v\end{array}\right]$ will be perpendicular to \boldsymbol{x}_{1}.

Solution-cont.

We can set u to any value such that \boldsymbol{x}_{2} is not a zero-vector, e.g., $u=1$ which gives $\boldsymbol{x}_{2}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$.
Finally, normalize \boldsymbol{x}_{1} and \boldsymbol{x}_{2} to have length 1 , which gives
$\boldsymbol{v}_{1}=\frac{\boldsymbol{x}_{1}}{\left|\boldsymbol{x}_{1}\right|}=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right]$ and
$\boldsymbol{v}_{2}=\frac{\boldsymbol{x}_{2}}{\left|\boldsymbol{x}_{2}\right|}=\left[\begin{array}{c}1 / \sqrt{6} \\ -2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right]$.

Solution-cont.

Next, take eigenvector from EigenSpace $\left(\lambda_{2}\right)$:

$$
\text { EigenSpace }\left(\lambda_{2}\right)=\left\{\left.\left[\begin{array}{l}
u \\
u \\
u
\end{array}\right] \right\rvert\, u \in \mathbb{R}\right\}
$$

This set has dimension 1 . We take an arbitrary eigenvector, e.g.,
$\boldsymbol{x}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and normalizing this vector to length 1 gives $\boldsymbol{v}_{3}=\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$.
Therefore:

$$
\begin{aligned}
& \boldsymbol{Q}=\left[\begin{array}{lll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{6} & 1 / \sqrt{3} \\
0 & -1 / \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right] \\
& \boldsymbol{B}=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Problem 4.

Suppose that an $n \times n$ matrix \boldsymbol{A} can be computed as $\boldsymbol{Q B} \boldsymbol{Q}^{-\mathbf{1}}$ where \boldsymbol{Q} is an $n \times n$ orthogonal matrix, and \boldsymbol{B} is an $n \times n$ diagonal matrix. Prove: \boldsymbol{A} is a symmetric matrix.

