ENGG1410F Tutorial
 More on Similarity Transformation

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

I: Proving Non-diagonalizability
We will start by seeing an example where we want to prove that the following matrix is not diagonalizable:

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-4 & 3 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

I: Proving Non-diagonalizability

Goal: Prove that we won't be able to find 3 linearly independent eigenvectors of \boldsymbol{A}.

First, find the eigenvalues of $\boldsymbol{A}: \lambda_{1}=1$ and $\lambda_{2}=2$.
We will prove:

- The eigenspace of λ_{1} has dimension 1 namely, any two eigenvectors of λ_{1} must be linearly dependent.
- The same is true for λ_{2}.

This will complete the proof.

I: Proving Non-diagonalizability

Let us first focus on $\lambda_{1}=1$. We want to solve the equation:

$$
\begin{aligned}
& \left(\boldsymbol{A}-\lambda_{1} \boldsymbol{I}\right) \boldsymbol{x}=0 \Rightarrow \\
& {\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & 1 / 2 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\mathbf{0}}
\end{aligned}
$$

We can see that there are two useful equations. In other words, there is only one unconstrained variable. Therefore, eigenspace $\left(\lambda_{1}\right)$ has dimension 1.

I: Proving Non-diagonalizability

Next, focus on $\lambda_{2}=2$. We want to solve the equation:

$$
\begin{array}{r}
\left(\boldsymbol{A}-\lambda_{2} \boldsymbol{I}\right) \boldsymbol{x}=0 \Rightarrow \\
{\left[\begin{array}{ccc}
-3 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\mathbf{0}}
\end{array}
$$

We can see that there are two useful equations. In other words, there is only one unconstrained variable. Therefore, eigenspace $\left(\lambda_{2}\right)$ has dimension 1.

We now can conclude that \boldsymbol{A} is not diagonalizable.

II: Transitivity of Diagonalizability
Let $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} be three $n \times n$ matrices for some integer n.

If \boldsymbol{A} is similar to \boldsymbol{B} and \boldsymbol{B} is similar to \boldsymbol{C}, then \boldsymbol{A} is similar to \boldsymbol{C}.

This is an exercise in the last week's exercise list.

III: Proof of Similarity
Prove:

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right]
$$

is similar to

$$
\boldsymbol{B}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]
$$

We will give two ways to do this.

III: Proof of Similarity
Method 1: Use transitivity.
Verify that \boldsymbol{A} and \boldsymbol{B} have the same eigenvalues: 3 and 2 .

- By the way, if they do not, then immediately they are not similar.

Hence, \boldsymbol{A} can be diagonalized into $\boldsymbol{P}^{-1} \operatorname{diag}[3,2] \boldsymbol{P}$, and \boldsymbol{B} can be diagonalized into $\boldsymbol{Q}^{-1} \operatorname{diag}[3,2] \boldsymbol{Q}$.

In other words, \boldsymbol{A} and \boldsymbol{B} are both similar to $\operatorname{diag}[3,2]$. Therefore, \boldsymbol{A} and B are similar to each other.

III: Proof of Similarity

Method 2: Finding an explicit form.
We will try to find an invertible matrix $\boldsymbol{P}=\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]$ such that $\boldsymbol{A}=\boldsymbol{P B} \boldsymbol{P}^{-1}$. Equivalently, we want to have $\boldsymbol{A P}=\boldsymbol{P} \boldsymbol{B}$, that is:

$$
\begin{aligned}
{\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right]\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right] } & =\left[\begin{array}{ll}
x & y \\
z & w
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \Rightarrow \\
{\left[\begin{array}{cc}
x-z & y-w \\
2 x+4 z & 2 y+4 w
\end{array}\right] } & =\left[\begin{array}{cc}
3 x & x+2 y \\
3 z & z+2 w
\end{array}\right]
\end{aligned}
$$

III: Proof of Similarity

Method 2: Finding an explicit form.

This gives the following equation set:

$$
\begin{aligned}
x-z & =3 x \\
y-w & =x+2 y \\
2 x+4 z & =3 z \\
2 y+4 w & =z+2 w
\end{aligned}
$$

You can verify that the set of solutions $\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$ is

$$
\left\{\left.\left[\begin{array}{c}
-u / 2 \\
u / 2-v \\
u \\
v
\end{array}\right] \right\rvert\, u \in \mathbb{R}, v \in \mathbb{R}\right\} .
$$

III: Proof of Similarity
Method 2: Finding an explicit form.
Let us try $u=2, v=0$. This gives $\boldsymbol{P}=\left[\begin{array}{cc}-1 & 2 \\ 2 & 0\end{array}\right]$.
Since $\operatorname{det}(\boldsymbol{P}) \neq 0$, we know that \boldsymbol{P} is invertible. We can now conclude that \boldsymbol{A} is similar to \boldsymbol{B}.

