Problem 1. Matrix Diagonalization

Diagonalize the following matrix:

\[A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \]
Solution

The 2×2 matrix A has two distinct eigenvalues $\lambda_1 = -1$ and $\lambda_2 = 5$, which means it is diagonalizable.

We then obtain an arbitrary eigenvector v_1 of λ_1 and also an arbitrary eigenvector v_2 of λ_2, say

$$v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ v_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Next, apply the diagonalization method we discussed in class, form:

$$Q = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

by using v_1 and v_2 as the first and second column respectively.
Solution–cont.

Q has the inverse

$$Q^{-1} = \begin{bmatrix} 2/3 & -1/3 \\ 1/3 & 1/3 \end{bmatrix}$$

We thus obtain the following diagonalization of A:

$$A = Q \ diag[-1, 5] \ Q^{-1}$$
Problem 2. Matrix Power

Consider again the matrix \(A \) in Problem 1, i.e.,

\[
A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}
\]

Calculate \(A^t \) for any integer \(t \geq 1 \).
We already know that

\[A = Q \ diag[-1, 5] \ Q^{-1} \]

Hence,

\[A^t = Q \ diag[(-1)^t, 5^t] \ Q^{-1} \]

\[
= \begin{bmatrix}
1 & 1 \\
-1 & 2
\end{bmatrix}
\begin{bmatrix}
(-1)^t & 0 \\
0 & 5^t
\end{bmatrix}
\begin{bmatrix}
2/3 & -1/3 \\
1/3 & 1/3
\end{bmatrix}
\]

\[
= \begin{bmatrix}
(5^t + 2 \times (-1)^t)/3 & (5^t + (-1)^{t+1})/3 \\
(2 \times 5^t + 2 \times (-1)^{t+1})/3 & (2 \times 5^t + (-1)^{t+2})/3
\end{bmatrix}
\]
Problem 3. Matrix Diagonalization

Diagonalize the following matrix:

\[A = \begin{bmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{bmatrix} \]
Solution

A has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$. $EigenSpace(\lambda_1)$ includes all $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ satisfying $x_1 = u + v$, $x_2 = u$, $x_3 = v$ for any $u, v \in \mathbb{R}$.

The vector space $EigenSpace(\lambda_1)$ has dimension 2 with a basis $\{v_1, v_2\}$ where $v_1 = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ (given by $u = 1, v = 0$) and $v_2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ (given by $u = 0, v = 1$).

Similarly, $EigenSpace(\lambda_2)$ includes all $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ satisfying $x_1 = x_2 = -3u$ and $x_3 = u$ for any $u \in \mathbb{R}$.

The vector space $EigenSpace(\lambda_2)$ has dimension 1 with a basis $\{v_3\}$ where $v_3 = \begin{bmatrix} -3 & -3 & 1 \end{bmatrix}^T$ (given by $u = 1$).
So far, we have obtained three linearly independent eigenvectors v_1, v_2, v_3 of A. We then construct

$$Q = \begin{bmatrix}
1 & 1 & -3 \\
1 & 0 & -3 \\
0 & 1 & 1
\end{bmatrix}$$

and Q has the inverse

$$Q^{-1} = \begin{bmatrix}
-3 & 4 & 3 \\
1 & -1 & 0 \\
-1 & 1 & 1
\end{bmatrix}$$

We thus obtain the following diagonalization of A:

$$A = Q \, diag[1, 1, 2] \, Q^{-1}$$
Problem 4. Matrix Similarity

Suppose that matrices A and B are similar to each other, namely, there exists P such that $A = P^{-1}BP$.

Prove: if x is an eigenvector of A under eigenvalue λ, then Px is an eigenvector of B under eigenvalue λ.
Problem 5. Matrix Trace

Definition. The trace of an \(n \times n \) square matrix \(A \), denoted by \(tr(A) \), is defined to be the sum of the elements on the main diagonal of \(A \), i.e.,
\[
tr(A) = \sum_{i=1}^{n} a_{ii}.
\]

For example, if
\[
A = \begin{bmatrix}
4 & -3 & -3 \\
3 & -2 & -3 \\
-1 & 1 & 2
\end{bmatrix}
\]
then \(tr(A) = 4 + (-2) + 2 = 4 \).

Prove: \(tr(AB) = tr(BA) \), where \(A \) is an \(m \times n \) matrix and \(B \) is an \(n \times m \) matrix.
Solution

Proof. Denote by \(a_{ij} \) the element of \(A \) at \(i \)-th row and \(j \)-th column, \(b_{ji} \) the element of \(B \) at \(j \)-th row and \(i \)-th column, where \(i = 1, 2, \cdots, m \) and \(j = 1, 2, \cdots, n \). Then

\[
(AB)_{ii} = a_{i1}b_{1i} + a_{i2}b_{2i} + \cdots + a_{in}b_{ni} = \sum_{j=1}^{n} a_{ij}b_{ji}
\]

Similarly,

\[
(BA)_{jj} = b_{j1}a_{1j} + b_{j2}a_{2j} + \cdots + b_{jm}a_{mj} = \sum_{i=1}^{m} b_{ji}a_{ij}
\]

Hence

\[
tr(AB) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{m} b_{ji}a_{ij} = tr(BA)
\]

\(\square \)
Problem 6. Traces & Eigenvalues & Determinants

Suppose A is an $n \times n$ diagonalizable matrix, namely, there exists Q such that $A = QBQ^{-1}$, and B is a diagonal matrix. Denote by $\lambda_1, \lambda_2, \cdots, \lambda_n$ the n eigenvalues of A.

Prove: (1) $tr(A) = \sum_{i=1}^{n} \lambda_i$, (2) $det(A) = \prod_{i=1}^{n} \lambda_i$.
Solution

Proof.

(1)

\[tr(A) = tr(QBQ^{-1}) \]
\[= tr(BQ^{-1}Q) \]
\[= tr(B) \]
\[= \sum_{i=1}^{n} \lambda_i \]

Where the second equality used the fact that \(tr(AB) = tr(BA) \) and the last equality used the facts (i) \(A \) and \(B \) have exactly the same eigenvalues due to their similarity, and (ii) the eigenvalues of a diagonal matrix are simply its diagonal elements.
(2)

\[
\text{det}(A) = \text{det}(QBQ^{-1}) \\
= \text{det}(Q) \cdot \text{det}(B) \cdot \text{det}(Q^{-1}) \\
= \text{det}(B) \cdot \text{det}(Q) \cdot \text{det}(Q^{-1}) \\
= \text{det}(B) \cdot \text{det}(QQ^{-1}) \\
= \text{det}(B) \\
= \prod_{i=1}^{n} \lambda_i
\]

Where the last equality used the facts (i) \(A \) and \(B \) have exactly the same eigenvalues due to their similarity, and (ii) the eigenvalues of a diagonal matrix are simply its diagonal elements.
In fact, the conclusion of this problem is true in general, regardless of whether A is diagonalizable.

For any $n \times n$ square matrix A, if its n eigenvalues are $\lambda_1, \lambda_2, \cdots, \lambda_n$, then $tr(A) = \sum_{i=1}^{n} \lambda_i$ and $det(A) = \prod_{i=1}^{n} \lambda_i$.

The proof is not difficult but a little tedious, students who are interested may refer to the proof at the following link: