ENGG1410-F Tutorial 6

Jianwen Zhao

Department of Computer Science and Engineering The Chinese University of Hong Kong

Problem 1. Matrix Diagonalization

Diagonalize the following matrix:

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]
$$

Solution

The 2×2 matrix \boldsymbol{A} has two distinct eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=5$, which means it is diagonalizable.

We then obtain an arbitrary eigenvector \boldsymbol{v}_{1} of λ_{1} and also an arbitrary eigenvector \boldsymbol{v}_{2} of λ_{2}, say

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Next, apply the diagonalization method we discussed in class, form:

$$
\boldsymbol{Q}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]
$$

by using \boldsymbol{v}_{1} and \boldsymbol{v}_{2} as the first and second column respectively.

Solution-cont.
Q has the inverse

$$
\boldsymbol{Q}^{-1}=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right]
$$

We thus obtain the following diagonalization of \boldsymbol{A} :

$$
\boldsymbol{A}=\boldsymbol{Q} \operatorname{diag}[-1,5] \boldsymbol{Q}^{-1}
$$

Problem 2. Matrix Power

Consider again the matrix \boldsymbol{A} in Problem 1, i.e,.

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]
$$

Calculate \boldsymbol{A}^{t} for any integer $t \geq 1$.

Solution

We already know that

$$
\boldsymbol{A}=\boldsymbol{Q} \operatorname{diag}[-1,5] \boldsymbol{Q}^{-1}
$$

Hence,

$$
\begin{aligned}
\boldsymbol{A}^{t} & =\boldsymbol{Q} \operatorname{diag}\left[(-1)^{t}, 5^{t}\right] \boldsymbol{Q}^{-1} \\
& =\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
(-1)^{t} & 0 \\
0 & 5^{t}
\end{array}\right]\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(5^{t}+2 \times(-1)^{t}\right) / 3 & \left(5^{t}+(-1)^{t+1}\right) / 3 \\
\left(2 \times 5^{t}+2 \times(-1)^{t+1}\right) / 3 & \left(2 \times 5^{t}+(-1)^{t+2}\right) / 3
\end{array}\right]
\end{aligned}
$$

Problem 3. Matrix Diagonalization

Diagonalize the following matrix:

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
4 & -3 & -3 \\
3 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right]
$$

Solution

\boldsymbol{A} has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2$. $\operatorname{EigenSpace}\left(\lambda_{1}\right)$ includes all $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ satisfying $x_{1}=u+v, x_{2}=u, x_{3}=v$ for any $u, v \in \mathbb{R}$.

The vector space EigenSpace $\left(\lambda_{1}\right)$ has dimension 2 with a basis $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ where $\boldsymbol{v}_{1}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{T}$ (given by $u=1, v=0$) and $\boldsymbol{v}_{2}=\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T}$ (given by $u=0, v=1$).

Similarly, EigenSpace $\left(\lambda_{2}\right)$ includes all $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$ satisfying $x_{1}=x_{2}=-3 u$ and $x_{3}=u$ for any $u \in \mathbb{R}$.

The vector space EigenSpace $\left(\lambda_{2}\right)$ has dimension 1 with a basis $\left\{\boldsymbol{v}_{3}\right\}$ where $\boldsymbol{v}_{3}=\left[\begin{array}{lll}-3 & -3 & 1\end{array}\right]^{T}$ (given by $u=1$).

Solution-cont.

So far, we have obtained three linearly independent eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ of \boldsymbol{A}. We then construct

$$
\boldsymbol{Q}=\left[\begin{array}{ccc}
1 & 1 & -3 \\
1 & 0 & -3 \\
0 & 1 & 1
\end{array}\right]
$$

and Q has the inverse

$$
\boldsymbol{Q}^{-1}=\left[\begin{array}{ccc}
-3 & 4 & 3 \\
1 & -1 & 0 \\
-1 & 1 & 1
\end{array}\right]
$$

We thus obtain the following diagonalization of \boldsymbol{A} :

$$
\boldsymbol{A}=\boldsymbol{Q} \operatorname{diag}[1,1,2] \boldsymbol{Q}^{-1}
$$

Problem 4. Matrix Similarity

Suppose that matrices \boldsymbol{A} and \boldsymbol{B} are similar to each other, namely, there exists \boldsymbol{P} such that $\boldsymbol{A}=\boldsymbol{P}^{-1} \boldsymbol{B} \boldsymbol{P}$.

Prove: if \boldsymbol{x} is an eigenvector of \boldsymbol{A} under eigenvalue λ, then $\boldsymbol{P} \boldsymbol{x}$ is an eigenvector of \boldsymbol{B} under eigenvalue λ.

Problem 5. Matrix Trace

Definition. The trace of an $n \times n$ square matrix \boldsymbol{A}, denoted by $\operatorname{tr}(A)$, is defined to be the sum of the elements on the main diagonal of \boldsymbol{A}, i.e., $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} a_{i i}$.

For example, if

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
4 & -3 & -3 \\
3 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right]
$$

then $\operatorname{tr}(\boldsymbol{A})=4+(-2)+2=4$.

Prove: $\operatorname{tr}(\boldsymbol{A B})=\operatorname{tr}(\boldsymbol{B} \boldsymbol{A})$, where \boldsymbol{A} is an $m \times n$ matrix and \boldsymbol{B} is an $n \times m$ matrix.

Solution

Proof. Denote by $a_{i j}$ the element of \boldsymbol{A} at i-th row and j-th column, $b_{j i}$ the element of \boldsymbol{B} at j-th row and i-th column, where $i=1,2, \cdots, m$ and $j=1,2, \cdots, n$. Then

Similarly,

$$
(\boldsymbol{A B})_{i i}=a_{i 1} b_{1 i}+a_{i 2} b_{2 i}+\cdots+a_{i n} b_{n i}=\sum_{j=1}^{n} a_{i j} b_{j i}
$$

Hence

$$
(\boldsymbol{B A})_{j j}=b_{j 1} a_{1 j}+b_{j 2} a_{2 j}+\cdots+b_{j m} a_{m j}=\sum_{i=1}^{m} b_{j i} a_{i j}
$$

$$
\operatorname{tr}(\boldsymbol{A B})=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} b_{j i}=\sum_{j=1}^{n} \sum_{i=1}^{m} b_{j i} a_{i j}=\operatorname{tr}(\boldsymbol{B} \boldsymbol{A})
$$

Problem 6. Traces \& Eigenvalues \& Determinants

Suppose \boldsymbol{A} is an $n \times n$ diagonalizable matrix, namely, there exists \boldsymbol{Q} such that $\boldsymbol{A}=\boldsymbol{Q B} \boldsymbol{Q}^{-1}$, and \boldsymbol{B} is a diagonal matrix. Denote by $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ the n eigenvalues of \boldsymbol{A}.

Prove: (1) $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \lambda_{i}, \quad$ (2) $\operatorname{det}(\boldsymbol{A})=\Pi_{i=1}^{n} \lambda_{i}$.

Proof.

(1)

$$
\begin{aligned}
\operatorname{tr}(\boldsymbol{A}) & =\operatorname{tr}\left(\boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}\right) \\
& =\operatorname{tr}\left(\boldsymbol{B} \boldsymbol{Q}^{-1} \boldsymbol{Q}\right) \\
& =\operatorname{tr}(\boldsymbol{B}) \\
& =\sum_{i=1}^{n} \lambda_{i}
\end{aligned}
$$

Where the second equality used the fact that $\operatorname{tr}(\boldsymbol{A B})=\operatorname{tr}(\boldsymbol{B} \boldsymbol{A})$ and the last equality used the facts (i) \boldsymbol{A} and \boldsymbol{B} have exactly the same eigenvalues due to their similarity, and (ii) the eigenvalues of a diagonal matrix are simply its diagonal elements.

Solution-cont.

(2)

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}) & =\operatorname{det}\left(\boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}\right) \\
& =\operatorname{det}(\boldsymbol{Q}) \cdot \operatorname{det}(\boldsymbol{B}) \cdot \operatorname{det}\left(\boldsymbol{Q}^{-1}\right) \\
& =\operatorname{det}(\boldsymbol{B}) \cdot \operatorname{det}(\boldsymbol{Q}) \cdot \operatorname{det}\left(\boldsymbol{Q}^{-1}\right) \\
& =\operatorname{det}(\boldsymbol{B}) \cdot \operatorname{det}\left(\boldsymbol{Q} \boldsymbol{Q}^{-1}\right) \\
& =\operatorname{det}(\boldsymbol{B}) \\
& =\Pi_{i=1}^{n} \lambda_{i}
\end{aligned}
$$

Where the last equality used the facts (i) \boldsymbol{A} and \boldsymbol{B} have exactly the same eigenvalues due to their similarity, and (ii) the eigenvalues of a diagonal matrix are simply its diagonal elements.

In fact, the conclusion of this problem is true in general, regardless of whether \boldsymbol{A} is diagonalizable.

For any $n \times n$ square matrix \boldsymbol{A}, if its n eigenvalues are $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, then $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \lambda_{i}$ and $\operatorname{det}(\boldsymbol{A})=\prod_{i=1}^{n} \lambda_{i}$.

The proof is not difficult but a little tedious, students who are interested may refer to the proof at the following link:
https://www.adelaide.edu.au/mathslearning/play/seminars/
evalue-magic-tricks-handout.pdf

