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Google made its first debut with page ranks, which represent a technique

for ranking the webpages on the Internet by importance. Today we will

give a short introduction to this technique. Interestingly, at its core, the

technique requires computing just an eigenvector.
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Let us model the Internet as a graph. Each webpage is represented as a
node. Given two nodes v1, v2 ∈ V , there is an edge from v1 to v2 if the
webpage v1 has a hyperlink to the webpage v2.

v1

v2 v3

v4 v5



4/14

Let us imagine the following process that mimics the behavior of a user
surfing randomly:

1. Let u be a random webpage in the Internet.

2. With probability α:

2.1 If there is at least one out-going link on u

2.2 Click on a random hyperlink in u
2.3 Set u to the new webpage that opens up.

2.4 Repeat from Step 2.

3. With probability 1− α:

3.1 Set u to a random webpage in the Internet.
3.2 Repeat from Step 2.

The value of α is often set to 0.85 in practice.
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For example, suppose we are at v3. Conceptually this is what we do:

Toss a coin that heads with probability α.
If the coin comes up heads, jump to v2 or v4 with equal chance.
If the coin comes up tails, jump to v1, v2, ..., v5 with equal chance.
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We’d like to ask this question:

If the user keeps surfing like this, where will s/he be at the
100000000000-th page visited?

But this is a wrong question, because the process is random, such that
there won’t be a deterministic answer. The correct question to ask is:

If the user keeps surfing like this, what is the probability that s/he
will land on v1 as the 100000000000-th page?

The probability is the page rank of v1. Of course, the same question can

also be asked about any other page.
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If the user keeps surfing like this, what is the probability that s/he
will land on v1 as the 100000000000-th page?

Why the number 100000000000? Interestingly, the theory of random
walks (which we will not get into today) tells us that the probability
remains the same as long as a sufficiently large number of steps have
been performed! In other words, it won’t matter if you replace
100000000000 with, say, 100000000001!
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If the user keeps surfing like this, what is the probability that s/he
will land on v1 as the 100000000000-th page?

The rationale behind page ranks is this:

A page v is more “important”, i.e., having a higher page rank, if a
random surfer has a larger chance landing on v after a sufficiently
large number of steps.
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The page ranks of v1, ..., v5 are 0.1716, 0.1666, 0.3214, 0.1666, and
0.1737, respectively. Note that the sum of all the page ranks is 1.

Remaining question: How to calculate them?
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Let n be the number of nodes.
Define M = [mij ] as an n × n matrix
where mij is the probability of moving from node vj to node vi .

v1

v2 v3

v4 v5

For example, when α = 0.85, m23 = 0.455. Why? See next.
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Recall: Suppose we are at v3. Conceptually this is what we do:

Toss a coin that heads with probability α.
If the coin comes up heads, jump to v2 or v4 with equal chance.
If the coin comes up tails, jump to v1, v2, ..., v5 with equal chance.

So the probability to go from v3 to v2 is:

α/2 + (1− α)/5

which is 0.455 for α = 0.85.
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You can verify:

M =


0.03 0.455 0.03 0.455 0.03
0.03 0.03 0.455 0.03 0.03

0.455 0.455 0.03 0.03 0.88
0.03 0.03 0.455 0.03 0.03

0.455 0.03 0.03 0.455 0.03


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Theory of random walks tells us some important facts:

M must have an eigenvalue 1.

The page ranks make an eigenvector under the eigenvalue 1!

In our example:

M =


0.03 0.455 0.03 0.455 0.03
0.03 0.03 0.455 0.03 0.03

0.455 0.455 0.03 0.03 0.88
0.03 0.03 0.455 0.03 0.03

0.455 0.03 0.03 0.455 0.03



You can verify that


0.1716
0.1666
0.3214
0.1666
0.1737

 is indeed an eigenvector of M under

eigenvalue 1.
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We now have an algorithm to compute the page ranks:

1 Obtain M .

2 Obtain an arbitrary eigenvector p of M under the eigenvalue 1.

3 Scale p into cp with a proper real number c so that all components
of cp add up to 1.

4 cp now stores the page ranks of all vertices.


