ENGG1410F Tutorial Introduction to Page Ranks

Yufei Tao
Department of Computer Science and Engineering Chinese University of Hong Kong

Google made its first debut with page ranks, which represent a technique for ranking the webpages on the Internet by importance. Today we will give a short introduction to this technique. Interestingly, at its core, the technique requires computing just an eigenvector.

Let us model the Internet as a graph. Each webpage is represented as a node. Given two nodes $v_{1}, v_{2} \in V$, there is an edge from v_{1} to v_{2} if the webpage v_{1} has a hyperlink to the webpage v_{2}.

Let us imagine the following process that mimics the behavior of a user surfing randomly:

1. Let u be a random webpage in the Internet.

Let us imagine the following process that mimics the behavior of a user surfing randomly:

1. Let u be a random webpage in the Internet.
2. With probability α :
2.1 If there is at least one out-going link on u
2.2 Click on a random hyperlink in u
2.3 Set u to the new webpage that opens up.
2.4 Repeat from Step 2.

Let us imagine the following process that mimics the behavior of a user surfing randomly:

1. Let u be a random webpage in the Internet.
2. With probability α :
2.1 If there is at least one out-going link on u
2.2 Click on a random hyperlink in u
2.3 Set u to the new webpage that opens up.
2.4 Repeat from Step 2.
3. With probability $1-\alpha$:
3.1 Set u to a random webpage in the Internet.
3.2 Repeat from Step 2.

The value of α is often set to 0.85 in practice.

For example, suppose we are at v_{3}. Conceptually this is what we do:

- Toss a coin that heads with probability α.
- If the coin comes up heads, jump to v_{2} or v_{4} with equal chance.
- If the coin comes up tails, jump to $v_{1}, v_{2}, \ldots, v_{5}$ with equal chance.

We'd like to ask this question:
If the user keeps surfing like this, where will s / he be at the 100000000000 -th page visited?

We'd like to ask this question:
If the user keeps surfing like this, where will $s / h e$ be at the 100000000000 -th page visited?

But this is a wrong question, because the process is random, such that there won't be a deterministic answer. The correct question to ask is:

If the user keeps surfing like this, what is the probability that s / he will land on v_{1} as the 100000000000 -th page?

We'd like to ask this question:
If the user keeps surfing like this, where will s / he be at the 100000000000 -th page visited?

But this is a wrong question, because the process is random, such that there won't be a deterministic answer. The correct question to ask is:

If the user keeps surfing like this, what is the probability that s / he will land on v_{1} as the 100000000000 -th page?

The probability is the page rank of v_{1}. Of course, the same question can also be asked about any other page.

If the user keeps surfing like this, what is the probability that s / he will land on v_{1} as the 100000000000 -th page?

Why the number 100000000000 ? Interestingly, the theory of random walks (which we will not get into today) tells us that the probability remains the same as long as a sufficiently large number of steps have been performed! In other words, it won't matter if you replace 100000000000 with, say, 100000000001 !

If the user keeps surfing like this, what is the probability that s / he will land on v_{1} as the 100000000000 -th page?

The rationale behind page ranks is this:
A page v is more "important", i.e., having a higher page rank, if a random surfer has a larger chance landing on v after a sufficiently large number of steps.

The page ranks of v_{1}, \ldots, v_{5} are $0.1716,0.1666,0.3214,0.1666$, and 0.1737 , respectively. Note that the sum of all the page ranks is 1 .

Remaining question: How to calculate them?

Let n be the number of nodes.
Define $\boldsymbol{M}=\left[m_{i j}\right]$ as an $n \times n$ matrix where $m_{i j}$ is the probability of moving from node v_{j} to node v_{i}.

For example, when $\alpha=0.85, m_{23}=0.455$. Why? See next.

Recall: Suppose we are at v_{3}. Conceptually this is what we do:

- Toss a coin that heads with probability α.
- If the coin comes up heads, jump to v_{2} or v_{4} with equal chance.
- If the coin comes up tails, jump to $v_{1}, v_{2}, \ldots, v_{5}$ with equal chance.

So the probability to go from v_{3} to v_{2} is:

$$
\alpha / 2+(1-\alpha) / 5
$$

which is 0.455 for $\alpha=0.85$.

You can verify:

$$
\boldsymbol{M}=\left[\begin{array}{ccccc}
0.03 & 0.455 & 0.03 & 0.455 & 0.03 \\
0.03 & 0.03 & 0.455 & 0.03 & 0.03 \\
0.455 & 0.455 & 0.03 & 0.03 & 0.88 \\
0.03 & 0.03 & 0.455 & 0.03 & 0.03 \\
0.455 & 0.03 & 0.03 & 0.455 & 0.03
\end{array}\right]
$$

Theory of random walks tells us some important facts:

- M must have an eigenvalue 1 .
- The page ranks make an eigenvector under the eigenvalue 1 !

Theory of random walks tells us some important facts:

- M must have an eigenvalue 1 .
- The page ranks make an eigenvector under the eigenvalue 1 !

In our example:

$$
\boldsymbol{M}=\left[\begin{array}{ccccc}
0.03 & 0.455 & 0.03 & 0.455 & 0.03 \\
0.03 & 0.03 & 0.455 & 0.03 & 0.03 \\
0.455 & 0.455 & 0.03 & 0.03 & 0.88 \\
0.03 & 0.03 & 0.455 & 0.03 & 0.03 \\
0.455 & 0.03 & 0.03 & 0.455 & 0.03
\end{array}\right]
$$

You can verify that $\left[\begin{array}{l}0.1716 \\ 0.1666 \\ 0.3214 \\ 0.1666 \\ 0.1737\end{array}\right]$ is indeed an eigenvector of \boldsymbol{M} under eigenvalue 1.

We now have an algorithm to compute the page ranks:
(1) Obtain M.
(2) Obtain an arbitrary eigenvector \boldsymbol{p} of \boldsymbol{M} under the eigenvalue 1 .
(3) Scale \boldsymbol{p} into $c \boldsymbol{p}$ with a proper real number c so that all components of $c \boldsymbol{p}$ add up to 1 .
(1) $c \boldsymbol{p}$ now stores the page ranks of all vertices.

