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Google made its first debut with page ranks, which represent a technique
for ranking the webpages on the Internet by importance. Today we will
give a short introduction to this technique. Interestingly, at its core, the
technique requires computing just an eigenvector.
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Let us model the Internet as a graph. Each webpage is represented as a
node. Given two nodes vy, vo € V, there is an edge from v; to v, if the
webpage v; has a hyperlink to the webpage v».
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Let us imagine the following process that mimics the behavior of a user
surfing randomly:

1. Let u be a random webpage in the Internet.
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Let us imagine the following process that mimics the behavior of a user
surfing randomly:

1. Let u be a random webpage in the Internet.

2. With probability «:

2.1 If there is at least one out-going link on u

2.2 Click on a random hyperlink in u
2.3 Set u to the new webpage that opens up.

2.4 Repeat from Step 2.
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Let us imagine the following process that mimics the behavior of a user

surfing randomly:
1. Let u be a random webpage in the Internet.

2. With probability «:

2.1 If there is at least one out-going link on u
2.2 Click on a random hyperlink in u

2.3 Set u to the new webpage that opens up.

2.4 Repeat from Step 2.
3. With probability 1 — «:

3.1 Set u to a random webpage in the Internet.

3.2 Repeat from Step 2.

The value of « is often set to 0.85 in practice.
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For example, suppose we are at vs3. Conceptually this is what we do:

@ Toss a coin that heads with probability a.
@ If the coin comes up heads, jump to v» or v4 with equal chance.
@ If the coin comes up tails, jump to vy, vo, ..., v5 with equal chance.
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We'd like to ask this question:

If the user keeps surfing like this, where will s/he be at the
100000000000-th page visited?
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We'd like to ask this question:

If the user keeps surfing like this, where will s/he be at the
100000000000-th page visited?

But this is a wrong question, because the process is random, such that
there won't be a deterministic answer. The correct question to ask is:

If the user keeps surfing like this, what is the probability that s/he
will land on v; as the 100000000000-th page?
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We'd like to ask this question:

If the user keeps surfing like this, where will s/he be at the
100000000000-th page visited?

But this is a wrong question, because the process is random, such that
there won't be a deterministic answer. The correct question to ask is:

If the user keeps surfing like this, what is the probability that s/he
will land on v; as the 100000000000-th page?

The probability is the page rank of v;. Of course, the same question can
also be asked about any other page.
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If the user keeps surfing like this, what is the probability that s/he
will land on v; as the 100000000000-th page?

Why the number 1000000000007 Interestingly, the theory of random
walks (which we will not get into today) tells us that the probability
remains the same as long as a sufficiently large number of steps have
been performed! In other words, it won't matter if you replace
100000000000 with, say, 100000000001!
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If the user keeps surfing like this, what is the probability that s/he
will land on v; as the 100000000000-th page?

The rationale behind page ranks is this:

A page v is more “important”, i.e., having a higher page rank, if a
random surfer has a larger chance landing on v after a sufficiently
large number of steps.
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The page ranks of vy, ..., v5 are 0.1716, 0.1666, 0.3214, 0.1666, and
0.1737, respectively. Note that the sum of all the page ranks is 1.

Remaining question: How to calculate them?
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Let n be the number of nodes.
Define M = [mj;] as an n x n matrix
where my; is the probability of moving from node v; to node v;.

For example, when o = 0.85, mp3 = 0.455. Why? See next.
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Recall: Suppose we are at v3. Conceptually this is what we do:

@ Toss a coin that heads with probability «.
@ If the coin comes up heads, jump to v, or v4 with equal chance.
@ If the coin comes up tails, jump to vy, v, ..., v5 with equal chance.

So the probability to go from vz to v; is:
a/2+(1—-a)/5

which is 0.455 for o« = 0.85.
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You can verify:

0.03 0.455 0.03 0.455 0.03
0.03 0.03 0.455 0.03 0.03
M = (0455 0455 0.03 0.03 0.88
0.03 0.03 0455 0.03 0.03
0.455 0.03 0.03 0.455 0.03
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Theory of random walks tells us some important facts:

@ M must have an eigenvalue 1.

@ The page ranks make an eigenvector under the eigenvalue 1!
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Theory of random walks tells us some important facts:

@ M must have an eigenvalue 1.

@ The page ranks make an eigenvector under the eigenvalue 1!
In our example:

0.03 0.455 0.03 0.455 0.03
0.03 0.03 0.455 0.03 0.03
M = [0455 0455 0.03 0.03 0.88
0.03 0.03 0455 0.03 0.03
0.455 0.03 0.03 0.455 0.03

0.1716
0.1666
You can verify that [0.3214] is indeed an eigenvector of M under
0.1666
0.1737
eigenvalue 1.
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We now have an algorithm to compute the page ranks:

@ Obtain M.
@ Obtain an arbitrary eigenvector p of M under the eigenvalue 1.

© Scale p into cp with a proper real number ¢ so that all components
of ¢p add up to 1.

© cp now stores the page ranks of all vertices.
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