ENGG1410-F Tutorial 4

Shangqi Lu

Department of Computer Science and Engineering The Chinese University of Hong Kong

I: Problems 4 and 5 in the Exercise list on "Matrix Inverses"

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

(1) Use Gauss-Jordan elimination to calculate the inverse of A.
(2) Use the "inverse formula" to calculate the inverse of A.

II: Problem 1 in the Exercise list on "Matrix Inverses"

Consider the following linear system:

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}=1 \\
3 x_{1}+x_{2}+x_{3}+x_{4}=a \\
x_{2}+2 x_{3}+2 x_{4}=3 \\
5 x_{1}+4 x_{2}+3 x_{3}+3 x_{4}=a
\end{array}\right.
$$

Depending on the value of a, when does the system have no solution, a unique solution, and infinitely many solutions?

Solution
Given a linear system $A x=b$, and the augmented matrix is $\widetilde{A}=[A \mid b]$.
Consistency Criterion Theorem. The linear system has:

1. no solution if and only if rank $A<\operatorname{rank} \widetilde{A}$;
2. exactly one solution if and only if rank $A=\operatorname{rank} \widetilde{A}=n$;
3. infinitely many solutions if and only if rank $A=\operatorname{rank} \widetilde{A}<n$.

Solution

Consider the augmented matrix \widetilde{A} :

$$
\widetilde{A}=\left[\begin{array}{llll|l}
1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & a \\
0 & 1 & 2 & 2 & 3 \\
5 & 4 & 3 & 3 & a
\end{array}\right]
$$

Solution

Apply elementary row operations to convert the augmented matrix \widetilde{A} into row echelon form:

$$
\begin{gathered}
\widetilde{A} \Longrightarrow\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 1 \\
0 & -2 & -2 & -2 & a-3 \\
0 & 1 & 2 & 2 & 3 \\
0 & -1 & -2 & -2 & a-5
\end{array}\right]
\end{gathered}>\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 3 \\
0 & -2 & -2 & -2 & a-3 \\
0 & -1 & -2 & -2 & a-5
\end{array}\right] .\left[\begin{array}{llll|c}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 3 \\
0 & 0 & 2 & 2 & a+3 \\
0 & 0 & 0 & 0 & a-2
\end{array}\right] .
$$

Solution

Now we can analyze the solutions of the linear system:

- If $a \neq 2$, then rank $\widetilde{A}=4$ whereas rank $A=3$. In this case, the system has no solution.
- If $a=2$, then $\operatorname{rank} A=\operatorname{rank} \widetilde{A}=3$, which is smaller than the number of variables. Hence, the system has infinitely many solutions.
- Regardless of the value of a, the linear system never has a unique solution.

III: Problem 6 in the Exercise list on "Matrix Inverses"
Compute the inverse of

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -3 & 1 \\
5 & 9 & 1
\end{array}\right]
$$

IV: Problem 7 in the Exercise list on "Matrix Inverses"
Let A be an $n \times n$ matrix. Also, let I be the $n \times n$ identity matrix. Prove: if $A^{3}=0$, then

$$
(I-A)^{-1}=I+A+A^{2}
$$

V: Problem 1 in the Exercise list on "Dimensions"
Let V be the set of following 1×4 vectors. Find the dimension of V .

$$
\begin{aligned}
& {[3} \\
& 3
\end{aligned} 0
$$

VI: Problem 3 in the Exercise list on "Dimensions"
For each set V of vectors given below, find its dimension and give a basis:
(a) V is the set of 2D points given by $y=x$ (here, we regard each point (x, y) as a 1×2 vector $[x, y])$;
(b) V is the set of 2D points given by $y=x+1$.

Solution

(a) Dimension: 1. A basis: $\{[1,1]\}$;
(b) Dimension: 2. A basis: $\{[0,1],[-1,0]\}$.

Remark: Here is an intuitive explanation why (b) has one more dimension than (a). To specify a line crossing the origin (such as $y=x$), you only need to give its slope; hence, the dimension of the line is 1 . To specify a line that does not pass the origin (such as $y=x+1$), you need to specify first its scope and then how to shift the line to the position you want; hence, the dimension becomes 2 .

VII: Problem 2 in the Exercise list on "Dimensions"

Let V be the set of 1×4 vectors $[2 x-3 y, x+2 y,-y, 4 x]$ with $x, y \in \mathbb{R}$.
Find the dimension of V and gives basis of V.

