ENGG1410-F Tutorial:
A Closer Look at
Linear Systems with Infinite Solutions

Yufei Tao
We learned about linear transformations. Today we will see an important application of this concept: finding all solutions to a linear system when there are infinitely many.
Let us warm up by discussing the projection of a set V of vectors. Take any V, e.g.:

$\begin{align*}
&[3,0,1,2] \\
&[6,1,0,0] \\
&[12,1,2,4] \\
&[6,0,2,4]
\end{align*}$

The projection of V onto the, say, 2nd and 3rd components is the following set V' of vectors:

$\begin{align*}
&[0,1] \\
&[1,0] \\
&[1,2] \\
&[0,2]
\end{align*}$

Can you give a very short proof of the following claim: the dimension of V is at least that of V'.
Let us warm up by discussing the projection of a set V of vectors. Take any V, e.g.:

\[
\begin{align*}
[3, 0, 1, 2] \\
[6, 1, 0, 0] \\
[12, 1, 2, 4] \\
[6, 0, 2, 4]
\end{align*}
\]

The projection of V onto the, say, 2nd and 3rd components is the following set V' of vectors:

\[
\begin{align*}
[0, 1] \\
[1, 0] \\
[1, 2] \\
[0, 2]
\end{align*}
\]

Can you give a very short proof of the following claim: the dimension of V is at least that of V'.

Proof: The rank of a matrix is at least the rank of any sub-matrix. □
In general, let V be any (perhaps infinite) set of vectors. By taking the same components of the vectors in V, we get a projection of V, which is a set V' of vectors.

The dimension of V is at least the dimension of V'

We leave the simple proof to you (this is actually a problem in an exercise list on the course homepage).
Now we cut into our main topic: linear system with infinitely many solutions. Consider the following system:

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 2 \\
0 & 1 & 1 & 0 & 2 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}.
\]

Remark: This is another problem in the same exercise list.
The system can be transformed into:

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}.
\]

We can derive the set \(V \) of all the solutions \(\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix} \) as follows.

First set \(x_4, x_5 \) to any real numbers (i.e., they are unconstrained). Then solve \(x_1, x_2, x_3 \) as:

\[
x_1 = - (x_4 + x_5)
\]

\[
x_2 = - x_5
\]

\[
x_3 = - x_5
\]

Now we ask the question: what is the dimension of \(V \)? Next, we show that the answer is 2, i.e., the number of variables minus the rank of the coefficient matrix!
The system can be transformed into:

$$
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}.
$$

We can derive the set V of all the solutions as follows.

First set x_4, x_5 to any real numbers (i.e., they are unconstrained). **Then** solve x_1, x_2, x_3 as:

\begin{align*}
 x_1 &= -(x_4 + x_5) \\
 x_2 &= -x_5 \\
 x_3 &= -x_5.
\end{align*}

Now we ask the question: what is the dimension of V?
The system can be transformed into:

\[
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}.
\]

We can derive the set \(V \) of all the solutions \(\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
\end{bmatrix} \) as follows.

First set \(x_4, x_5 \) to any real numbers (i.e., they are unconstrained). Then solve \(x_1, x_2, x_3 \) as:

\[
\begin{align*}
 x_1 &= -(x_4 + x_5) \\
 x_2 &= -x_5 \\
 x_3 &= -x_5.
\end{align*}
\]

Now we ask the question: what is the dimension of \(V \)?

Next, we show that the answer is 2, i.e., the number of variables minus the rank of the coefficient matrix!
Denote by V' the set of all vectors $\begin{bmatrix} x_4 \\ x_5 \end{bmatrix}$.

Clearly, V' has dimension 2 (remember: x_4, x_5 are unconstrained).

$$
\begin{align*}
x_1 &= -(x_4 + x_5) \\
x_2 &= -x_5 \\
x_3 &= -x_5 \\
x_4 &= x_4 \\
x_5 &= x_5
\end{align*}
$$

That is, V can be obtained from V' through a linear transformation!

We know from the lecture that linear transformations do not increase the dimension! Therefore, the dimension of V is at most the dimension of V'. In other words, the dimension of V is at most 2.
V': the set of all vectors $\begin{bmatrix} x_4 \\ x_5 \end{bmatrix}$.

\[
\begin{align*}
x_1 &= -(x_4 + x_5) \\
x_2 &= -x_5 \\
x_3 &= -x_5 \\
x_4 &= x_4 \\
x_5 &= x_5
\end{align*}
\]

On the other hand, note that V' is the projection of V onto the 4-th and 5-th components. From our earlier discussion, we know that the dimension of V is at least the dimension of V'. In other words, the dimension of V is at least 2.

We now conclude that the dimension of V is precisely 2.