ENGG1410-F Tutorial 3

Shangqi Lu

Department of Computer Science and Engineering The Chinese University of Hong Kong

Problem 1

Suppose the following linear system $A x=b$ has at least one non-zero solution (in which at least one of x_{1}, x_{2} and x_{3} is non-zero). Calculate the possible values of λ.

$$
\left\{\begin{array}{l}
(1+\lambda) x_{1}+x_{2}+x_{3}=0 \\
x_{1}+(1+\lambda) x_{2}+x_{3}=0 \\
x_{1}+x_{2}+(1+\lambda) x_{3}=0
\end{array}\right.
$$

Note: regardless of $\lambda, x_{1}=x_{2}=x_{3}=0$ is always a solution.

Solution

As mentioned, $x_{1}=x_{2}=x_{3}=0$ is always a solution. If the system has at least one non-zero solution, it means that the system has more than one solution.

According to the consistency criterion theorem, $\operatorname{det}(A)=0$.

$$
\left|\begin{array}{ccc}
1+\lambda & 1 & 1 \\
1 & 1+\lambda & 1 \\
1 & 1 & 1+\lambda
\end{array}\right|=0
$$

Solving the equation, we know that $\lambda=0$ or $\lambda=-3$.

Problem 2
Calculate the determinant of the following matrix.

$$
\left[\begin{array}{cccccc}
0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & \cdots & 2 & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
2018 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 2019
\end{array}\right]
$$

Solution

Let A be an $n \times n$ matrix. Denote by $r_{i}(i=1,2, \ldots, n)$ the i-th row vectors of A.

Recall that the determinant of A :

- should be multiplied by 1 after switching two rows of A.
- should be multiplied by c after multiplying all numbers of a row of A by the same non-zero value c.
- has no change after updating row r_{i} to $r_{i}+r_{j}$.

Solution
Transform the given matrix into the following diagonal matrix by only using the operation of switching two columns :

$$
\left[\begin{array}{cccccc}
1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 2 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 2018 & 0 \\
0 & 0 & \cdots & 0 & 0 & 2019
\end{array}\right]
$$

You can verify that there is an odd number of such operations (think: why). The answer is -2019! (factorial of 2019).

