Problem 1. Gauss Elimination

Consider the following linear system:

\[
\begin{align*}
2y + z &= -8 \\
x - 2y - 3z &= 0 \\
-x + y + 2z &= 3
\end{align*}
\]

Solve it with Gauss Elimination.
Solution

We first obtain the augmented matrix:

\[
\begin{bmatrix}
0 & 2 & 1 & -8 \\
1 & -2 & -3 & 0 \\
-1 & 1 & 2 & 3
\end{bmatrix}
\]
Next, we convert the matrix into row echelon form:

\[
\begin{bmatrix}
0 & 2 & 1 & -8 \\
1 & -2 & -3 & 0 \\
-1 & 1 & 2 & 3
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
-1 & 1 & 2 & 3 \\
1 & -2 & -3 & 0 \\
0 & 2 & 1 & -8
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
-1 & 1 & 2 & 3 \\
0 & -1 & -1 & 3 \\
0 & 2 & 1 & -8
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
-1 & 1 & 2 & 3 \\
0 & -1 & -1 & 3 \\
0 & 0 & -1 & -2
\end{bmatrix}
\]
Now apply back substitution to obtain the solution of x, y, z. Specifically,

\[-z = -2 \implies z = 2\]
\[-y - z = 3 \implies y = -5\]
\[-x + y + 2z = 3 \implies x = -4\]

Therefore, the solution of the linear system is $x = -4, y = -5, z = 2$.
Problem 2. Rank calculation

Calculate the rank of the following matrix:

\[
\begin{bmatrix}
0 & 16 & 8 & 4 \\
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2
\end{bmatrix}
\]
Problem 3. An Important Property of Ranks

Consider the following 3×5 matrix:

$$A = \begin{bmatrix}
1 & 2 & 3 & 5 & 7 \\
1 & \sqrt{2} & \sqrt{3} & \sqrt{5} & \sqrt{7} \\
1 & 2^{1/3} & 3^{1/3} & 5^{1/3} & 7^{1/3}
\end{bmatrix}$$

Prove: there must be a column vector that is a linear combination of the other column vectors.
Solution

Proof. Denote by \(c_i \) \((i = 1, 2, \cdots, 5) \) the \(i \)-th column vector of \(A \), since \(A \) is a \(3 \times 5 \) matrix, we know that

\[
\text{rank} A = \text{rank} A^T \leq 3
\]

which implies that the column vectors of \(A \) are linearly dependent. In other words, there exist real values \(\alpha_1, \cdots, \alpha_5 \) such that

- they are not all zero;
- they satisfy \(\sum_{i=1}^{5} \alpha_i c_i = 0 \).

Suppose \(\alpha_k \neq 0 \) for some \(k \), then we have:

\[
c_k = - \sum_{i=1, i \neq k}^{5} \frac{\alpha_i}{\alpha_k} c_i
\]

That said, \(c_k \) is a linear combination of the other column vectors. \(\square \)
In fact, the above conclusion can be generalized, i.e.:

for an $m \times n$ matrix A, if $m < n$, then there must be a column vector of A that is a linear combination of the other column vectors.

The proof is similar and left to you as an exercise.
Problem 4. Rank calculation

Consider a plane \(z = 2x + 3y \) in 3-dimensional space, suppose there are \(m \) points on this plane, and point \(i \) has the coordinates \((x_i, y_i, z_i)\), where \(i = 1, \cdots, m \). Let

\[
A = \begin{bmatrix}
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2 \\
 \vdots & \vdots & \vdots \\
 x_m & y_m & z_m
\end{bmatrix}
\]

Prove: \(\text{rank}A \leq 2 \).
Solution

Proof. Perform *elementary column operations* on A:

$$A = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \vdots & \vdots & \vdots \\ x_m & y_m & z_m \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 2x_1 + 3y_1 \\ x_2 & y_2 & 2x_2 + 3y_2 \\ \vdots & \vdots & \vdots \\ x_m & y_m & 2x_m + 3y_m \end{bmatrix}$$

$$\implies \begin{bmatrix} x_1 & y_1 & 3y_1 \\ x_2 & y_2 & 3y_2 \\ \vdots & \vdots & \vdots \\ x_m & y_m & 3y_m \end{bmatrix} \implies \begin{bmatrix} x_1 & y_1 & 0 \\ x_2 & y_2 & 0 \\ \vdots & \vdots & \vdots \\ x_m & y_m & 0 \end{bmatrix}$$

Hence, $\text{rank } A = \text{rank } A^T \leq 2$. □
Problem 5. Determinant calculation

Calculate the determinant of the following matrix:

\[
\begin{bmatrix}
0 & 4 & -6 \\
4 & 0 & 10 \\
-6 & 10 & 0
\end{bmatrix}
\]
Problem 6. Rank Properties

Prove: \(\text{rank}(AB) \leq \text{rank}A \).
Recall:

- Elementary row operations on a matrix do not change its rank.
- Perform an elementary row operation on a matrix A is equivalent to left-multiplying A by a row elementary matrix.
- The rank of a matrix of row echelon form is the number of its non-zero rows.
Proof. Denote by A' the row echelon form of A, E_i a row elementary matrix, and suppose A' is obtained from A by performing z elementary row operations, i.e.,

$$A' = (\prod_{i=1}^{z} E_i) A = EA$$

Let $\text{rank} A = \text{rank} A' = r$, i.e., the first r rows of A' are non-zero, whereas the remaining rows are all zero vectors.

Suppose A' is an $m \times n$ matrix, B is an $n \times p$ matrix, denote the row vectors of A' as r_1, \cdots, r_m in top-down order and the column vectors of B as c_1, \cdots, c_p in left-to-right order.
Then, we have

\[A'B = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix} \begin{bmatrix} c_1 & c_2 & \cdots & c_p \end{bmatrix} = \begin{bmatrix} r_1 \\ \vdots \\ r_r \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} c_1 & c_2 & \cdots & c_p \end{bmatrix} \]

\[
= \begin{bmatrix}
 r_1 \cdot c_1 & r_1 \cdot c_2 & \cdots & r_1 \cdot c_p \\
 \vdots & \vdots & \ddots & \vdots \\
 r_r \cdot c_1 & r_r \cdot c_2 & \cdots & r_r \cdot c_p \\
 0 & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 0
\end{bmatrix}
\]
Therefore,

\[\text{rank}(AB) = \text{rank}(E(AB)) = \text{rank}((EA)B) = \text{rank}(A'B) \leq r = \text{rank}A \]

where the first inequality used the fact that performing the elementary row operations indicated by \(E \) do not change the rank of \(AB \). \(\square \)
Problem 7. Rank Properties

Let A be a $m \times n$ matrix, B be a $p \times q$ matrix obtained by extracting p rows and q columns of A, i.e., B is a submatrix of A.

Prove: $\text{rank}(B) \leq \text{rank}(A)$.
Solution

Proof. Denote by r_i the i-th row vector of A, and r'_j the j-th row vector of B, where $i = 1, \cdots, m$ and $j = 1, \cdots, p$. Assume $	ext{rank} B = r$, then there must be r row vectors of B that are linearly independent, let them be $r'_{x_1}, r'_{x_2}, \cdots, r'_{x_r}$, and the corresponding row vectors of A are $r_{y_1}, r_{y_2}, \cdots, r_{y_r}$, where $x_k \in [1, p], y_k \in [1, m], k \in [1, r]$ and x_k, y_k, k are all integers. Note that r_{y_k} is an expansion of r'_{x_k} for each k.

Then we have

$$\sum_{k=1}^{r} \alpha'_k r'_{x_k} = 0 \iff \alpha'_1 = \alpha'_2 = \cdots = \alpha'_k = 0.$$ (1)
Hence we must have
\[\sum_{k=1}^{r} \alpha_k r_{y_k} = 0 \text{ iff } \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0. \] \hspace{1cm} (2)

Otherwise, set \(\alpha'_k = \alpha_k \) for each \(k \) will violate (1).

(2) implies \(\text{rank} A \geq r = \text{rank} B \). \ Нечето