ENGG1410-F: Quiz 3

Name:

Student ID:

Problem $1 \mathbf{(4 0 \%)}$. Find an equation of the plane that passes points $A(1,0,0), B(0,2,0)$, and $C(0,0,3)$.

Solution.

$$
\begin{aligned}
& \overrightarrow{A B}=[-1,2,0] \\
& \overrightarrow{A C}=[-1,0,3]
\end{aligned}
$$

Hence we can get a normal vector \boldsymbol{u} of the plane as

$$
\begin{aligned}
\boldsymbol{u} & =\overrightarrow{A B} \times \overrightarrow{A C} \\
& =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
-1 & 2 & 0 \\
-1 & 0 & 3
\end{array}\right|=[6,3,2]
\end{aligned}
$$

Let $P=(x, y, z)$ be a point on the plane. Then, the vector $\overrightarrow{A P}=[x-1, y, z]$ must be perpendicular to \boldsymbol{u}, which gives:

$$
\begin{aligned}
\overrightarrow{A P} \cdot \boldsymbol{u} & =0 \\
6(x-1)+3 y+2 z & =0
\end{aligned} \Rightarrow
$$

which is an equation of the plane.
Problem $2(\mathbf{2 0 \%})$. Consider the curve $\boldsymbol{r}(t)=\left[t, t, t^{2}\right]$. Let C be the arc of the curve defined by increasing t from 0 to 1. Calculate

$$
\int_{C} \frac{1}{\sqrt{4 t^{2}+2}} d s
$$

Solution. Write $\boldsymbol{r}(t)=[x(t), y(t), z(t)]=\left[t, t, t^{2}\right]$. Therefore:

$$
\begin{aligned}
\int_{C} \frac{1}{\sqrt{4 t^{2}+2}} d s & =\int_{0}^{1} \frac{1}{\sqrt{4 t^{2}+2}} \frac{d s}{d t} d t \\
& =\int_{0}^{1} \frac{1}{\sqrt{4 t^{2}+2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\int_{0}^{1} \frac{1}{\sqrt{4 t^{2}+2}} \sqrt{1+1+4 t^{2}} d t \\
& =\int_{0}^{1} d t=1
\end{aligned}
$$

Problem 3 (40%). Consider the scalar function $f(x, y, z)=x^{2} y+z^{2}$. Find the maximum rate of change at point $P=(1,1,1)$.
(Note: the maximum rate of change is the largest directional derivative at P.)
Solution. First compute the gradient of f :

$$
\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]=\left[2 x y, x^{2}, 2 z\right]
$$

The maximum rate of change is the directional derivative of the unit vector \boldsymbol{u} that has the same direction as ∇f.

Now, calculate ∇f at point P :

$$
\nabla f(P)=[2,1,2]
$$

Hence:

$$
\boldsymbol{u}=\left[\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right]
$$

The directional derivative at P in the direction of \boldsymbol{u} is

$$
\begin{aligned}
\nabla f(P) \cdot \boldsymbol{u} & =[2,1,2] \cdot\left[\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right] \\
& =3
\end{aligned}
$$

