ENGG1410-F: Quiz 2

Name:

Student ID:

Write all your answers on this sheet, and use the back if necessary.
Problem 1 (20\%). Compute the inverse of the following matrix

$$
\left[\begin{array}{lll}
0 & 2 & 0 \\
2 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

Solution.

$$
\begin{aligned}
{\left[\begin{array}{llllll}
0 & 2 & 0 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] } & \Rightarrow\left[\begin{array}{llllll}
2 & 1 & 1 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{llllll}
2 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccccccc}
2 & 0 & 1 & -1 / 2 & 1 & 0 \\
0 & 1 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccccc}
2 & 0 & 0 & -1 / 2 & 1 & -1 \\
0 & 1 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccccccc}
1 & 0 & 0 & -1 / 4 & 1 / 2 & -1 / 2 \\
0 & 1 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Hence, the answer is $\left[\begin{array}{ccc}-1 / 4 & 1 / 2 & -1 / 2 \\ 1 / 2 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Problem 2 (20\%). Find the dimension of the following set of vectors:

$$
\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \right\rvert\, x^{2}+y^{2}+z^{2}=1\right\} .
$$

You need to show the details of your work.
Solution. Clearly, vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are all in the set. Since these vectors constitute a linearly independent set, we know that the dimension of the set is at least 3. On the other hand, since each vector is 3×1, the dimension of the set is at most 3 . It thus follows that the set has dimension exactly 3 .

Problem 3 (60\%). Diagonalize the following matrix

$$
\boldsymbol{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

into the form $\boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}$ where \boldsymbol{B} is a diagonalize matrix. You only need to show the details of \boldsymbol{Q} and \boldsymbol{B} (namely, you do not need to give the details of \boldsymbol{Q}^{-1}).

Solution. We first obtain the characteristic equation of \boldsymbol{A} :

$$
\begin{aligned}
|\boldsymbol{A}-\lambda \boldsymbol{I}|
\end{aligned}=0 \Rightarrow
$$

Hence, the eigenvalues are: $\lambda_{1}=1, \lambda_{2}=-1$. Since these eigenvalues are distinct, it suffices to find an arbitrary eigenvector for each eigenvalue.

Next we obtain the eigenspace of λ_{1}, namely, the set of $\left[\begin{array}{l}x \\ y\end{array}\right]$ satisfying:

$$
\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=0 \Rightarrow
$$

Find an arbitrary non-zero solution, e.g., $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
We then obtain the eigenspace of λ_{2}, namely, the set of $\left[\begin{array}{l}x \\ y\end{array}\right]$ satisfying:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=0 \Rightarrow
$$

Find an arbitrary non-zero solution, e.g., $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
Therefore, $\boldsymbol{Q}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.

