Question 1.

Solution.

$$
\begin{align*}
& \begin{array}{l}
{\left[\begin{array}{ccccc}
1 & 4 & 1 & 1 & 1 \\
-1 & -3 & -2 & 1 & 1 \\
2 & 0 & 6 & 1 & 1 \\
0 & 2 & -1 & 2 & 1 \\
0 & 2 & -1 & 2 & 1
\end{array}\right]} \\
{\left[\begin{array}{ccccc}
1 & 4 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 & 2 \\
0 & -8 & 4 & -1 & -1 \\
0 & 2 & -1 & 2 & 1 \\
0 & 2 & -1 & 2 & 1
\end{array}\right] \begin{array}{c}
\text { Row } 2+\text { Row } 1 \\
\text { Row } 3-2 \text { Row } 1
\end{array}}
\end{array} \tag{1}\\
& \rightarrow\left[\begin{array}{ccccc}
1 & 4 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 & 2 \\
0 & 0 & -4 & 15 & 15 \\
0 & 0 & 1 & -2 & -3 \\
0 & 0 & 1 & -2 & -3
\end{array}\right] \begin{array}{l}
\text { Row } 3+8 \text { Row } 2 \\
\text { Row } 4-2 \text { Row } 2 \\
\text { Row } 5-2 \text { Row } 2
\end{array} \tag{3}\\
& \rightarrow\left[\begin{array}{ccccc}
1 & 4 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 & 2 \\
0 & 0 & -4 & 15 & 15 \\
0 & 0 & 0 & 7 & 3 \\
0 & 0 & 0 & 7 & 3
\end{array}\right] \begin{array}{l}
\\
4 \text { Row } 4+\text { Row } 3 \\
4 \text { Row } 5+\text { Row } 3
\end{array} \tag{4}\\
& \rightarrow\left[\begin{array}{ccccc}
1 & 4 & 1 & 1 & 1 \\
0 & 1 & -1 & 2 & 2 \\
0 & 0 & -4 & 15 & 15 \\
0 & 0 & 0 & 7 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \text { Row } 5-\text { Row } 4
\end{align*}
$$

Hence, the rank of the matrix is 4 .

Question 2.

Solution.

(a) Augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & 4 & -2 & 0 \\
3 & 5 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
6 & 12 & -6 & 0 \\
6 & 10 & 0 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
6 & 12 & -6 & 0 \\
0 & -2 & 6 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & 1 & -3 & -1
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 5 & 2 \\
0 & 1 & -3 & -1
\end{array}\right]
\end{aligned}
$$

This indicates equations:

$$
\begin{aligned}
& x_{1}+5 x_{3}=2 \\
& x_{2}-3 x_{3}=-1
\end{aligned}
$$

Hence all the solutions $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ constitute the set:

$$
\left\{\left.\left[\begin{array}{c}
2-5 t \\
-1+3 t \\
t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

(b) Augmented matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
2 & 1 & 4 & 9 \\
3 & -1 & a & b
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & -3 \\
0 & -4 & a-3 & b-18
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -1 & 2 & -3 \\
0 & 0 & a-11 & b-6
\end{array}\right]
$$

Hence, for the system to have a unique solution, it must hold that $a \neq 11$ (the value of b can be anything).
(c) For the system to have no solutions, it must hold that $a=11$ and $b \neq 6$.

Question 3.

Solution.

(a) It is easy to show that $\operatorname{det}(\boldsymbol{A})=\operatorname{det}(\boldsymbol{B})=36$. Therefore, $\operatorname{det}\left(\boldsymbol{A}^{-1} \boldsymbol{B}^{T}\right)=\frac{1}{\operatorname{det}(\boldsymbol{A})} \cdot \operatorname{det}(\boldsymbol{B})=1$.
(b)

$$
\begin{aligned}
& x_{1}=\frac{\left|\begin{array}{ccc}
9 & -1 & 0 \\
5 & 1 & 1 \\
8 & 1 & -1
\end{array}\right|}{\left|\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right|}=\frac{-31}{-1}=31 \\
& x_{2}=\frac{\left|\begin{array}{ccc}
1 & 9 & 0 \\
-1 & 5 & 1 \\
0 & 8 & -1
\end{array}\right|}{\left|\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right|}=\frac{-22}{-1}=22 \\
& x_{3}=\frac{\left|\begin{array}{ccc}
1 & -1 & 9 \\
-1 & 1 & 5 \\
0 & 1 & 8
\end{array}\right|}{\left|\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right|}=\frac{-14}{-1}=14
\end{aligned}
$$

Question 4.

Solution.

1. Compute A^{-1} : The augmented matrix is expressed as

$$
\begin{aligned}
& {\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 3 & 3 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \text { row } 2^{\prime}=\text { row } 2-\text { row } 1 ; } \\
\rightarrow & {\left[\begin{array}{llllclll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 3 & 3 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \text { row } 3^{\prime}=\text { row } 3-\text { row } 1 ; \text { row } 3^{\prime}=\text { row } 3-2 \text { row } 2 } \\
\rightarrow & {\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & -2 & 1 \\
1 \\
1 & 3 & 3 & 1 & 0 & 0 & 0 \\
1
\end{array}\right] \text { row } 4^{\prime}=\text { row } 4-\text { row } 1-3 \text { row } 2-3 \text { row } 3 } \\
\rightarrow & {\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & -2 & 1 \\
0 \\
0 & 0 & 0 & 1 & -1 & 3 & -3 \\
1
\end{array}\right] } \\
\Rightarrow & A^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right]
\end{aligned}
$$

2. Compute $\left(\frac{1}{2} A\right)^{-1}$:

$$
\left(\frac{1}{2} A\right)^{-1}=2 A^{-1}=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-2 & 2 & 0 & 0 \\
2 & -4 & 2 & 0 \\
-2 & 6 & -6 & 2
\end{array}\right] .
$$

Question 5.

Solution. Consider the characteristic equation of \boldsymbol{A} :

$$
\begin{aligned}
|\boldsymbol{A}-\lambda \boldsymbol{I}| & =0 \\
\left|\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right| & =0 \\
(a-\lambda)(d-\lambda)-b c & =0 \\
\lambda^{2}-(a+d) \lambda+a d-b c & =0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{(a+d)+\sqrt{\Delta}}{2} \\
& \lambda_{2}=\frac{(a+d)-\sqrt{\Delta}}{2}
\end{aligned}
$$

where $\Delta=(a+d)^{2}-4(a d-b c)$. It thus follows that $\lambda_{1}+\lambda_{2}=a+d$.

Question 6.

Solution. It is clear that \boldsymbol{A} has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=0$. We aim to find three eigenvectors that are linearly independent.

Towards this purpose, let us first obtain the eigenspace of λ_{1}, i.e., the set of $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ satisfying

$$
\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0 .
$$

This set can be represented as

$$
\left\{\left.\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

Pick an arbitrary non-zero vector from the set, e.g., $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
Next, let us obtain the eigenspace of λ_{2}, i.e., the set of $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ satisfying

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0
$$

This set can be represented as

$$
\left\{\left.\left[\begin{array}{l}
v \\
u \\
v
\end{array}\right] \right\rvert\, u, v \in \mathbb{R}\right\}
$$

Pick two non-zero vectors that are linearly independent, e.g., $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
With the above, we can decide \boldsymbol{P} and \boldsymbol{B} as:

$$
\begin{aligned}
& \boldsymbol{P}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \boldsymbol{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Question 7.

Solution.
(a) Since \boldsymbol{A} is skew-symmetric, we have

$$
\begin{aligned}
& a=d=0 \\
& c=-b
\end{aligned}
$$

Since \boldsymbol{A} is orthogonal, we have

$$
\boldsymbol{A}^{T}=\boldsymbol{A}^{-1}
$$

Consider

$$
\begin{aligned}
\boldsymbol{I} & =\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{A} \boldsymbol{A}^{T} \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] } & =\left[\begin{array}{cc}
0 & b \\
-b & 0
\end{array}\right]\left[\begin{array}{cc}
0 & -b \\
b & 0
\end{array}\right]=\left[\begin{array}{cc}
b^{2} & 0 \\
0 & b^{2}
\end{array}\right] \Rightarrow \\
b & = \pm 1
\end{aligned}
$$

Therefore,

$$
\boldsymbol{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(b) If \boldsymbol{B} is skew-symmetric, then

$$
e=0
$$

This implies

$$
\operatorname{det}(\boldsymbol{B})=0
$$

which means that \boldsymbol{B}^{-1} does not exist. Therefore, \boldsymbol{B} is not orthogonal.

