Lecture Notes: Curves and Tangent Vectors

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

1 Curves

Imagine that you move a point around in \mathbb{R}^{d}. The locus of the point forms a curve. Intuitively, a curve is a one-dimensional "in nature": we can represent a curve using a vector function $\boldsymbol{r}(t)$:

$$
\boldsymbol{r}(t)=\left[x_{1}(t), x_{2}(t), \ldots ., x_{d}(t)\right]
$$

where t is a real value in a certain range, and each function $x_{i}(t)$ (with $i \in[1, d]$) returns a real value. For each $t,\left(x_{1}(t), \ldots, x_{d}(t)\right)$ defines a point, and $\boldsymbol{r}(t)$ gives the corresponding vector.

For example, $\boldsymbol{r}(t)=[\cos t, \sin t]$ for $t \in[0,2 \pi)$ defines a circle in \mathbb{R}^{2}, whereas $\boldsymbol{r}(t)=[\cos t, \sin t, t]$ for $t \in[0,2 \pi)$ defines a circular helix in \mathbb{R}^{3} as shown below:

As yet another example, given constant d-dimensional vectors \boldsymbol{p} and \boldsymbol{q} with $\boldsymbol{q} \neq \mathbf{0}$, function $\boldsymbol{r}(t)=\boldsymbol{p}+t \boldsymbol{q}$ for $t \in(-\infty, \infty)$ gives a line in \mathbb{R}^{d}.

2 Tangent Vectors

We are ready to introduce:
Definition 1. Let $\boldsymbol{r}(t)$ be a curve, t_{0} be a value of t, and p be the point corresponding to $\boldsymbol{r}\left(t_{0}\right)$. If $\boldsymbol{r}(t)$ is differentiable at t_{0}, then the vector $\boldsymbol{r}^{\prime}\left(t_{0}\right)$ is the tangent vector of the curve at p.

The tangent vector has an intuitive geometric interpretation. Let q be the point that corresponds to $\boldsymbol{f}\left(t_{0}+\Delta t\right)$; see the figure below. Let us focus on the direction of the directed segment $\vec{p} \vec{q}$. Now, imagine q moving along the curve towards p (namely, Δt tends to 0). The direction of the directed segment gradually converges to the direction of the tangent vector at p.

We will refer to

$$
\boldsymbol{u}\left(t_{0}\right)=\frac{\boldsymbol{r}^{\prime}(t)}{\left|\boldsymbol{r}^{\prime}(t)\right|}
$$

as the unit tangent vector of the curve at p. Note that $\left|\boldsymbol{u}\left(t_{0}\right)\right|=1$.
As an example, consider the helix mentioned earlier: $\boldsymbol{r}(t)=[\cos t, \sin t, t]$ for $t \in[0,2 \pi)$. Let p be the point corresponding to $\boldsymbol{r}(1)$. Then, the tangent vector of the curve at p is $\boldsymbol{r}^{\prime}(1)=$ $[-\sin (1), \cos (1), 1]$. The unit tangent vector at p is therefore $\left[-\frac{\sin (1)}{\sqrt{2}}, \frac{\cos (1)}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$.

