Lecture Notes: Surfaces, Tangent Planes, and Surface Normals

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

1 Surfaces

We will focus on \mathbb{R}^{3} with dimensions x, y, and z. Consider a plane $x+2 y+3 z-4=0$, or a sphere $x^{2}+y^{2}+z^{2}=1$. In mathematics, we call them "surfaces".

Formally, a surface can be defined by equating scalar function $f(x, y, z)$ to 0 , namely, $f(x, y, z)=$ 0 . In the plane example, $f(x, y, z)=x+2 y+3 z-4$, whereas in the sphere example, $f(x, y, z)=$ $x^{2}+y^{2}+z^{2}-1$. It would be helpful to understand why $f(x, y, z)=0$ is a surface in the following way. Take a point (x, y) in the $x y$ plane, and solve the value of z from $f(x, y, z)=0$. If z exists, think of z as the "elevation" of a mountain at the longitude x and altitude y. If you move (x, y) around, using z you will be tracing out the top of an undulating mountain. Note that sometimes multiple z may satisfy $f(x, y, z)=0$, as is true for the sphere $x^{2}+y^{2}+z^{2}=1$.

2 Tangent Planes and Surface Normals

Consider a surface $f(x, y, z)=0$. Fix a point $p\left(x_{0}, y_{0}, z_{0}\right)$ on the surface such that $\frac{\partial f}{\partial x}\left(x_{0}, y_{0}, z_{0}\right), \frac{\partial f}{\partial y}\left(x_{0}, y_{0}, z_{0}\right), \frac{\partial f}{\partial z}\left(x_{0}, y_{0}, z_{0}\right)$ exist, and are not all equal to $0-$ note that $\left[\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right]$ is exactly the gradient of the scale function $f(x, y, z)$.

Take an arbitrary curve C on the surface passing p. We know that C can be described by functions $x(t), y(t)$, and $z(t)$, which take a real-valued parameter t, and give the $\mathrm{x}-, \mathrm{y}$-, and z coordinates of a point on C. Let t_{0} be the value of t corresponding to p (hence, $x_{0}=x(t), y_{0}=y(t)$, and $\left.z_{0}=z(t)\right)$. We assume that $x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)$ exist, and are not all equal to 0 .

As C is on the surface, we know that

$$
f(x(t), y(t), z(t))=0 .
$$

Taking the derivative of both sides with respect to t gives:

$$
\begin{aligned}
\frac{d(f(x(t), y(t), z(t)))}{d t} & =0 \Rightarrow \\
\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} & =0 \quad \text { (applied the chain rule here) } \Rightarrow \\
{\left[\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right] \cdot\left[x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right] } & =0 \Rightarrow \\
\nabla f(x, y, z) \cdot\left[x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right] & =0 .
\end{aligned}
$$

Applying the above equation to point p results in

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot\left[x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right]=0
$$

The above equation tells us something interesting. Notice that $\left[x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right]$ is a tangent vector of C at p. By our assumptions, neither $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ nor $\left[x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right]$ is $\mathbf{0}$. Therefore, the direction of $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is perpendicular to that of $\left[x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right), z^{\prime}\left(t_{0}\right)\right]$.

Here is something even more interesting. Recall that we chose C as an arbitrary curve passing p whose tangent vector at p is not $\mathbf{0}$. There can be an infinite number of such curves (the figure below shows two examples). All their tangent lines must be perpendicular to the direction of $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$! It thus follows that all those tangent lines must form a plane, and that the direction of $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is perpendicular to this plane!

The plane aforementioned is therefore called the tangent plane of the surface at $p . \nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is called a normal vector of the surface at p.

Example. Consider the sphere $x^{2}+y^{2}+z^{2}=1$ and a point $p\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right)$ on the sphere. What is the tangent plane π of the sphere at p ?

Define $f(x, y, z)=x^{2}+y^{2}+z^{2}-1$. Hence, the sphere is given by $f(x, y, z)=0$. The gradient of f is:

$$
\begin{aligned}
\nabla f(x, y, z) & =\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right] \\
& =[2 x, 2 y, 2 z] .
\end{aligned}
$$

From the earlier discussion, we know that π must be perpendicular to the gradient vector at p, namely: $\nabla f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right)=\left[\frac{2}{\sqrt{2}}, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{6}}\right]$. To write out the equation for π, let $q=(x, y, z)$ be any point on π. We know that the vector $\overrightarrow{p q}$ must be perpendicular to $\nabla f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right)$ (which is a normal vector of π at p). This means:

$$
\begin{aligned}
& \overrightarrow{p q} \cdot \nabla f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right)=0 \quad \Rightarrow \\
& {\left[x-\frac{2}{\sqrt{2}}, y-\frac{2}{\sqrt{3}}, z-\frac{2}{\sqrt{6}}\right] \cdot\left[\frac{2}{\sqrt{2}}, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{6}}\right] }=0
\end{aligned} \quad \Rightarrow
$$

