Lecture Notes: Gradient

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

Let $p\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ be a point in \mathbb{R}^{d}. We will often view it as a d-dimensional vector $\left[x_{1}, x_{2}, \ldots, x_{d}\right]$. As a convention, if it has been clear from the context that p is a point, then \boldsymbol{p} represents this corresponding vector.

Let $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ be a scalar function of real-valued parameters x_{1}, \ldots, x_{d}. In other words, for each point $p\left(x_{1}, \ldots, x_{d}\right)$ of $\mathbb{R}^{d}, f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ returns a real value, if it is defined at p. For simplicity, sometimes we may write $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ simply as $f(p)$. Next, we introduce a concept called gradient for such functions:

Definition 1. Let $f\left(x_{1}, \ldots, x_{d}\right)$ be a function defined as above. Consider a point $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ at which the partial derivative $\frac{\partial f}{\partial x_{i}}\left(t_{1}, \ldots, t_{d}\right)$ exists for all $i \in[1, d]$. Then, the gradient of $f\left(x_{1}, \ldots, x_{d}\right)$ at $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ is the vector:

$$
\nabla f\left(t_{1}, \ldots, t_{d}\right)=\left[\frac{\partial f}{\partial x_{1}}\left(t_{1}, \ldots, t_{d}\right), \frac{\partial f}{\partial x_{2}}\left(t_{1}, \ldots, t_{d}\right), \ldots, \frac{\partial f}{\partial x_{d}}\left(t_{1}, \ldots, t_{d}\right)\right] .
$$

For example, suppose that $f(x, y, z)=x^{3}+2 x y+3 x z^{2}$. We know that $\frac{\partial f}{\partial x}=3 x^{2}+2 y+3 z^{2}$, $\frac{\partial f}{\partial y}=2 x$, and $\frac{\partial f}{\partial z}=6 x$. Therefore,

$$
\nabla f(x, y, z)=\left[3 x^{2}+2 y+3 z^{2}, 2 x, 6 x\right] .
$$

The gradient $\nabla f\left(t_{1}, \ldots, t_{d}\right)$ has an important geometric interpretation. Imagine that we are standing at the point $p\left(t_{1}, \ldots, t_{d}\right)$. Then the gradient points to the direction we should move in order to increase the value of function $f\left(x_{1}, \ldots, x_{d}\right)$ the fastest. Next, we will formalize the intuition.

Lemma 1. Suppose that we decide to move from p towards the direction of a unit vector \boldsymbol{u} by a distance Δs. Let q be the point we will reach, as shown below:

We have:

$$
\begin{equation*}
\lim _{\Delta s \rightarrow 0} \frac{f(q)-f(p)}{\Delta s}=(\nabla f(p)) \cdot \boldsymbol{u} \tag{1}
\end{equation*}
$$

Proof. Suppose that $\boldsymbol{u}=\left[u_{1}, u_{2}, \ldots, u_{d}\right]$, and the coordinates of p are $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$.
Let ℓ be the line that passes p and q. We know that we can represent any point on ℓ as $\left(x_{1}(s), x_{2}(s), \ldots, x_{d}(s)\right)$, where for all $i \in[1, d]$:

$$
x_{i}(s)=t_{i}+s \cdot u_{i} .
$$

In particular, if $s=0$, the above representation gives p, whereas if $s=\Delta s$, the above representation gives q.

Define $g(s)=f\left(x_{1}(s), \ldots, x_{d}(s)\right)$. We can re-write the left hand side of (1) as:

$$
\begin{aligned}
\lim _{\Delta s \rightarrow 0} \frac{f(q)-f(p)}{\Delta s} & =\lim _{\Delta s \rightarrow 0} \frac{g(\Delta s)-g(0)}{\Delta s} \\
\text { (by def. of derivative) } & =g^{\prime}(0) .
\end{aligned}
$$

On the other hand, applying the chain rule ${ }^{1}$, we know:

$$
\begin{aligned}
g^{\prime}(s) & =\sum_{i=1}^{d} \frac{\partial f}{\partial x_{i}}\left(x_{1}(s), \ldots, x_{d}(s)\right) \frac{d x_{i}}{d s} \\
& =\left[\frac{\partial f}{\partial x_{1}}\left(x_{1}(s), \ldots, x_{d}(s)\right), \ldots, \frac{\partial f}{\partial x_{d}}\left(x_{1}(s), \ldots, x_{d}(s)\right)\right] \cdot\left[x_{1}^{\prime}(s), \ldots, x_{d}^{\prime}(s)\right] \\
& =\left(\nabla f\left(x_{1}(s), \ldots, x_{d}(s)\right)\right) \cdot\left[u_{1}, \ldots, u_{d}\right] \\
& =\left(\nabla f\left(x_{1}(s), \ldots, x_{d}(s)\right)\right) \cdot \boldsymbol{u} .
\end{aligned}
$$

Therefore, $g^{\prime}(0)=\left(\nabla f\left(x_{1}(0), \ldots, x_{d}(0)\right)\right) \cdot \boldsymbol{u}=(\nabla f(p)) \cdot \boldsymbol{u}$.
As a corollary of the above lemma, we obtain

$$
\lim _{\Delta s \rightarrow 0} \frac{f(q)-f(p)}{\Delta s}=|\nabla f(p)||\boldsymbol{u}| \cos \gamma .
$$

where γ is the angle between the directions of $\nabla f(p)$ and \boldsymbol{u}. Hence, the limit is maximized if $\gamma=0$, namely, \boldsymbol{u} has the same direction as $\nabla f(p)$.

It is worth mentioning that the limit on the left hand side of (1) is called the directional derivative in the direction of \boldsymbol{u}, and is denoted as $D_{u} f$. Note that this is a function of p. In other words, $D_{\boldsymbol{u}} f(p)$ gives the directional derivative in the direction of \boldsymbol{u} at point p.

[^0]
[^0]: ${ }^{1}$ For example, suppose that $f(x, y)=x y$ with $x=\sin t$ and $y=t$. The chain rule states that $\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$. To verify this, let us first compute $\frac{\mathrm{d} f}{\mathrm{~d} t}$ directly: since $f=(\sin t) \cdot t$, we have $\frac{\mathrm{d} f}{\mathrm{~d} t}=(\cos t) t+\sin t$. We can get the same using the chain rule: $\frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}=y \cdot \cos t+x=(\cos t) t+\sin t$. In general, given a function $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ where each $x_{i}(i \in[1, d])$ is a function of t, the chain rule states that $\frac{\mathrm{d} f}{\mathrm{~d} t}=\sum_{i=1}^{d} \frac{\partial f}{\partial x_{i}} \frac{\partial x_{i}}{\partial t}$

