Lecture Notes: Gradient

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

Let $p(x_1, x_2, ..., x_d)$ be a point in \mathbb{R}^d . We will often view it as a *d*-dimensional vector $[x_1, x_2, ..., x_d]$. As a convention, if it has been clear from the context that p is a point, then p represents this corresponding vector.

Let $f(x_1, x_2, ..., x_d)$ be a scalar function of real-valued parameters $x_1, ..., x_d$. In other words, for each point $p(x_1, ..., x_d)$ of \mathbb{R}^d , $f(x_1, x_2, ..., x_d)$ returns a real value, if it is defined at p. For simplicity, sometimes we may write $f(x_1, x_2, ..., x_d)$ simply as f(p). Next, we introduce a concept called *gradient* for such functions:

Definition 1. Let $f(x_1, ..., x_d)$ be a function defined as above. Consider a point $(t_1, t_2, ..., t_d)$ at which the partial derivative $\frac{\partial f}{\partial x_i}(t_1, ..., t_d)$ exists for all $i \in [1, d]$. Then, the gradient of $f(x_1, ..., x_d)$ at $(t_1, t_2, ..., t_d)$ is the vector:

$$\nabla f(t_1, ..., t_d) = \left[\frac{\partial f}{\partial x_1}(t_1, ..., t_d), \frac{\partial f}{\partial x_2}(t_1, ..., t_d), ..., \frac{\partial f}{\partial x_d}(t_1, ..., t_d) \right]$$

For example, suppose that $f(x, y, z) = x^3 + 2xy + 3xz^2$. We know that $\frac{\partial f}{\partial x} = 3x^2 + 2y + 3z^2$, $\frac{\partial f}{\partial y} = 2x$, and $\frac{\partial f}{\partial z} = 6x$. Therefore,

$$\nabla f(x, y, z) = [3x^2 + 2y + 3z^2, 2x, 6x].$$

The gradient $\nabla f(t_1, ..., t_d)$ has an important geometric interpretation. Imagine that we are standing at the point $p(t_1, ..., t_d)$. Then the gradient points to the direction we should move in order to increase the value of function $f(x_1, ..., x_d)$ the *fastest*. Next, we will formalize the intuition.

Lemma 1. Suppose that we decide to move from p towards the direction of a unit vector \mathbf{u} by a distance Δs . Let q be the point we will reach, as shown below:

We have:

$$\lim_{\Delta s \to 0} \frac{f(q) - f(p)}{\Delta s} = \left(\nabla f(p)\right) \cdot \boldsymbol{u}.$$
 (1)

Proof. Suppose that $\boldsymbol{u} = [u_1, u_2, ..., u_d]$, and the coordinates of p are $(t_1, t_2, ..., t_d)$.

Let ℓ be the line that passes p and q. We know that we can represent any point on ℓ as $(x_1(s), x_2(s), \dots, x_d(s))$, where for all $i \in [1, d]$:

$$x_i(s) = t_i + s \cdot u_i.$$

In particular, if s = 0, the above representation gives p, whereas if $s = \Delta s$, the above representation gives q.

Define $g(s) = f(x_1(s), ..., x_d(s))$. We can re-write the left hand side of (1) as:

$$\lim_{\Delta s \to 0} \frac{f(q) - f(p)}{\Delta s} = \lim_{\Delta s \to 0} \frac{g(\Delta s) - g(0)}{\Delta s}$$
(by def. of derivative) = $g'(0)$.

On the other hand, applying the chain rule¹, we know:

$$g'(s) = \sum_{i=1}^{d} \frac{\partial f}{\partial x_i}(x_1(s), ..., x_d(s)) \frac{dx_i}{ds} \\ = \left[\frac{\partial f}{\partial x_1}(x_1(s), ..., x_d(s)), ..., \frac{\partial f}{\partial x_d}(x_1(s), ..., x_d(s)) \right] \cdot \left[x_1'(s), ..., x_d'(s) \right] \\ = (\nabla f(x_1(s), ..., x_d(s))) \cdot [u_1, ..., u_d] \\ = (\nabla f(x_1(s), ..., x_d(s))) \cdot \mathbf{u}.$$

Therefore, $g'(0) = (\nabla f(x_1(0), ..., x_d(0))) \cdot \boldsymbol{u} = (\nabla f(p)) \cdot \boldsymbol{u}.$

As a corollary of the above lemma, we obtain

$$\lim_{\Delta s \to 0} \frac{f(q) - f(p)}{\Delta s} = \left| \nabla f(p) \right| |\boldsymbol{u}| \cos \gamma.$$

where γ is the angle between the directions of $\nabla f(p)$ and \boldsymbol{u} . Hence, the limit is maximized if $\gamma = 0$, namely, \boldsymbol{u} has the same direction as $\nabla f(p)$.

It is worth mentioning that the limit on the left hand side of (1) is called the *directional* derivative in the direction of \boldsymbol{u} , and is denoted as $D_{\boldsymbol{u}}f$. Note that this is a function of p. In other words, $D_{\boldsymbol{u}}f(p)$ gives the directional derivative in the direction of \boldsymbol{u} at point p.

¹For example, suppose that f(x, y) = xy with $x = \sin t$ and y = t. The chain rule states that $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$. To verify this, let us first compute $\frac{df}{dt}$ directly: since $f = (\sin t) \cdot t$, we have $\frac{df}{dt} = (\cos t)t + \sin t$. We can get the same using the chain rule: $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} = y \cdot \cos t + x = (\cos t)t + \sin t$. In general, given a function $f(x_1, x_2, ..., x_d)$ where each x_i $(i \in [1, d])$ is a function of t, the chain rule states that $\frac{df}{dt} = \sum_{i=1}^d \frac{\partial f}{\partial x_i} \frac{\partial x_i}{\partial t}$