Lecture Notes: Dot Product and Cross Product

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

1 Angle between Two Vectors

Definition 1. Given two non-zero vectors $\boldsymbol{a}=\left[a_{1}, \ldots, a_{d}\right]$ and $\boldsymbol{b}=\left[b_{1}, \ldots, b_{d}\right]$, we define their angle as the smaller angle ${ }^{1}$ between the lines $\ell_{\boldsymbol{a}}$ and $\ell_{\boldsymbol{b}}$, where $\ell_{\boldsymbol{a}}$ is the line passing the origin and the point $\left(a_{1}, \ldots, a_{d}\right)$, and similarly $\ell_{\boldsymbol{b}}$ is the line passing the origin and the point $\left(b_{1}, \ldots, b_{d}\right)$.

The figure below shows an example in two-dimensional space. Points A and B have coordinates $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$, respectively. Thus, \boldsymbol{a} is the vector defined by the directed segment $\overrightarrow{O A}$, and \boldsymbol{b} is the vector defined by the directed segment $\overrightarrow{O B}$. The angle between \boldsymbol{a} and \boldsymbol{b} is the angle γ as indicated in the figure between the two directed segments. Note that the angle of two vectors always falls between 0 and 180 degrees.

We say that vectors \boldsymbol{a} and \boldsymbol{b} are orthogonal if their angle is 90°.

2 Dot Product Revisited

Recall that given two vectors $\boldsymbol{a}=\left[a_{1}, \ldots, a_{d}\right]$ and $\boldsymbol{b}=\left[b_{1}, \ldots, b_{d}\right]$, their dot product $\boldsymbol{a} \cdot \boldsymbol{b}$ is the real value $\sum_{i=1}^{d} a_{i} b_{i}$. This is sometimes also referred to as the inner product of \boldsymbol{a} and \boldsymbol{b}. Next, we will prove an important but less trivial property of dot product:

Lemma 1. If $\boldsymbol{a} \neq \mathbf{0}$ and $\boldsymbol{b} \neq \mathbf{0}$, then $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \gamma$, where $\gamma \in\left[0^{\circ}, 180^{\circ}\right]$ is the angle between non-zero vectors \boldsymbol{a} and \boldsymbol{b}. .
Proof. Let $\overrightarrow{O A}$ and $\overrightarrow{O B}$ be the directed segments that define \boldsymbol{a} and \boldsymbol{b}, respectively; see Figure 1 . We know that $\overrightarrow{A B}$ defines the vector $\boldsymbol{b}-\boldsymbol{a}$. By the law of cosine, we have:

$$
\begin{align*}
|\overrightarrow{A B}|^{2} & =|\overrightarrow{O A}|^{2}+|\overrightarrow{O B}|^{2}-2|\overrightarrow{O A}||\overrightarrow{O B}| \cos \gamma \Rightarrow \\
\cos \gamma & =\frac{|\overrightarrow{O A}|^{2}+|\overrightarrow{O B}|^{2}-|\overrightarrow{A B}|^{2}}{2|\overrightarrow{O A}||\overrightarrow{O B}|} \tag{1}
\end{align*}
$$

[^0]

Figure 1: Proof of Lemma 1

On the other hand, we have:

$$
\begin{aligned}
|\overrightarrow{O A}|^{2} & =|\boldsymbol{a}|^{2}=\boldsymbol{a} \cdot \boldsymbol{a} \\
|\overrightarrow{O B}|^{2} & =|\boldsymbol{b}|^{2}=\boldsymbol{b} \cdot \boldsymbol{b} \\
|\overrightarrow{A B}|^{2} & =|\boldsymbol{b}-\boldsymbol{a}|^{2}=(\boldsymbol{b}-\boldsymbol{a}) \cdot(\boldsymbol{b}-\boldsymbol{a})
\end{aligned}
$$

(by distributivity of dot product) $=(\boldsymbol{b}-\boldsymbol{a}) \cdot \boldsymbol{b}-(\boldsymbol{b}-\boldsymbol{a}) \cdot \boldsymbol{a}$
(by distributivity of dot product) $=\boldsymbol{b} \cdot \boldsymbol{b}-\boldsymbol{a} \cdot \boldsymbol{b}-\boldsymbol{b} \cdot \boldsymbol{a}+\boldsymbol{a} \cdot \boldsymbol{a}$

$$
=\boldsymbol{b} \cdot \boldsymbol{b}-2 \boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{a} \cdot \boldsymbol{a}
$$

we can derive from (1)

$$
\cos \gamma=\frac{\boldsymbol{a} \cdot \boldsymbol{a}+\boldsymbol{b} \cdot \boldsymbol{b}-(\boldsymbol{b} \cdot \boldsymbol{b}-2 \boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{a} \cdot \boldsymbol{a})}{2|\boldsymbol{a}||\boldsymbol{b}|}=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|}
$$

thus completing the proof.

Corollary 1. When $\boldsymbol{a} \neq \mathbf{0}$ and $\boldsymbol{b} \neq \mathbf{0}$, then $\boldsymbol{a} \cdot \boldsymbol{b}=0$ if and only if \boldsymbol{a} and \boldsymbol{b} are orthogonal.

Dot Product and Projection Length. Let us now see an important use of dot product: computing the projection length of a line segment. Figure 2 shows 3 points $P(-5,7,2), A(3,20,8)$, and $B(1,10,5)$. Let C be the projection of point A onto $\overrightarrow{P B}$. We want to calculate the length of $\overrightarrow{P C}$, denoted as $|\overrightarrow{P C}|$.

Dot products provide an easy way to solve this problem. Let \boldsymbol{a} be the vector defined by $\overrightarrow{P A}$, and \vec{b} the vector defined by $\overrightarrow{P B}$. Clearly, $\boldsymbol{a}=[8,13,6]$ and $\boldsymbol{b}=[6,3,3]$. It thus follows that $\boldsymbol{a} \cdot \boldsymbol{b}=[8 \cdot 6+13 \cdot 3+6 \cdot 3]=105$. On the other hand, from Lemma 1, we know that $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a} \| \boldsymbol{b}| \cos \gamma$, where γ is the angle as shown in Figure 2b. As $|\boldsymbol{b}|=\sqrt{54}$, we know that

$$
\begin{array}{r}
|\boldsymbol{a}| \sqrt{54} \cos \gamma=105 \Rightarrow \\
\quad|\boldsymbol{a}| \cos \gamma=105 / \sqrt{54} .
\end{array}
$$

Observe from Figure 2b $|\boldsymbol{a}| \cos \gamma$ is exactly $|\overrightarrow{P C}|$.

Figure 2: Using dot product to calculate projection lengths

3 Cross Product

Unlike dot product which is defined on vectors of arbitrary dimensionality d, cross product is defined only on 3d vectors:

Definition 2. Given two 3d vectors $\boldsymbol{a}=\left[a_{1}, a_{2}, a_{3}\right]$ and $\boldsymbol{b}=\left[b_{1}, b_{2}, b_{3}\right]$, we define $\boldsymbol{a} \times \boldsymbol{b}$, which is called the cross product of \boldsymbol{a} and \boldsymbol{b}, as the vector $\boldsymbol{c}=\left[c_{1}, c_{2}, c_{3}\right]$ where

$$
\begin{aligned}
& c_{1}=a_{2} b_{3}-a_{3} b_{2} \\
& c_{2}=a_{3} b_{1}-a_{1} b_{3} \\
& c_{3}=a_{1} b_{2}-a_{2} b_{1} .
\end{aligned}
$$

The following equation offers an easy way to remember the above equations:

$$
\boldsymbol{a} \times \boldsymbol{b}=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
$$

It is easy to verify by definition the following properties of cross product:

- (Anti-Commutativity) $\boldsymbol{a} \times \boldsymbol{b}=-(\boldsymbol{b} \times \boldsymbol{a})$.
- (Distributivity) $\boldsymbol{a} \times(\boldsymbol{b}+\boldsymbol{c})=(\boldsymbol{a} \times \boldsymbol{b})+(\boldsymbol{a} \times \boldsymbol{c})$, and $(\boldsymbol{b}+\boldsymbol{c}) \times \boldsymbol{a}=(\boldsymbol{b} \times \boldsymbol{a})+(\boldsymbol{c} \times \boldsymbol{a})$.

Note that in general cross product does not necessarily obey associativity. Here is a counter example: $\boldsymbol{i} \times \boldsymbol{i} \times \boldsymbol{j}=\mathbf{0} \times \boldsymbol{j}=\mathbf{0}$, but $\boldsymbol{i} \times(\boldsymbol{i} \times \boldsymbol{j})=\boldsymbol{i} \times \boldsymbol{k}=-\boldsymbol{j}$.

Geometry of Cross Products. Next we will gain a geometric understanding about cross products.

Lemma 2. Let $\gamma \in\left[0^{\circ}, 180^{\circ}\right]$ be the angle between the directions of two non-zero vectors \boldsymbol{a} and \boldsymbol{b}, and $\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}$. Then, $|\boldsymbol{c}|=|\boldsymbol{a}||\boldsymbol{b}| \sin \gamma$.

Proof. See appendix.
As an immediate corollary, we know that $\boldsymbol{c}=\mathbf{0}$ in each of the following scenarios:

- $\boldsymbol{a}=\mathbf{0}$ or $\boldsymbol{b}=\mathbf{0}$.

Figure 3: Illustration of cross product

- The angle between \boldsymbol{a} and \boldsymbol{b} is 0° or 180°.

If $\boldsymbol{c} \neq \mathbf{0}$, its length $|\boldsymbol{c}|$ has a beautiful explanation. Let O be the origin; and let $\overrightarrow{O A}$ and $\overrightarrow{O B}$ the directed segments that define \boldsymbol{a} and \boldsymbol{b}, respectively. Then, $|\boldsymbol{c}|$ is twice the area of the triangle $O A B$; see Figure 3a (note that the length of directed segment $\overrightarrow{B D}$ equals $|\boldsymbol{b}| \sin \gamma$).

Lemma 3. Let $\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}$. Then, $\boldsymbol{a} \cdot \boldsymbol{c}=0$ and $\boldsymbol{b} \cdot \boldsymbol{c}=0$.
Proof. Let $\boldsymbol{a}=\left[a_{1}, a_{2}, a_{3}\right], \boldsymbol{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\boldsymbol{c}=\left[c_{1}, c_{2}, c_{3}\right]$. We will prove only $\boldsymbol{a} \cdot \boldsymbol{c}=0$ because an analogous argument shows $\boldsymbol{b} \cdot \boldsymbol{c}=0$.

$$
\begin{aligned}
\boldsymbol{a} \cdot \boldsymbol{c} & =a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3} \\
& =a_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)+a_{2}\left(a_{3} b_{1}-a_{1} b_{3}\right)+a_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right) \\
& =0 .
\end{aligned}
$$

The lemma leads to the following important corollary:
Corollary 2. Let $\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}$. If $\boldsymbol{c} \neq \mathbf{0}$, then the directed segment $\overrightarrow{O C}$ defining \boldsymbol{c} is perpendicular to the plane determined by the directed segments $\overrightarrow{O A}$ and $\overrightarrow{O B}$ that define \boldsymbol{a} and \boldsymbol{b}, respectively (see Figure 3b, where the plane is ρ).

Proof. Since $\boldsymbol{c} \neq \mathbf{0}$, we know that (i) neither \boldsymbol{a} nor \boldsymbol{b} is $\mathbf{0}$, and (ii) the angle γ between the directions of \boldsymbol{a} and \boldsymbol{b} is larger than 0° but smaller than 180°. Hence, $\overrightarrow{O A}$ and $\overrightarrow{O B}$ uniquely determine a plane ρ. Since $\boldsymbol{a} \cdot \boldsymbol{c}=0$ and $\boldsymbol{b} \cdot \boldsymbol{c}=0$, we know that $\overrightarrow{O C}$ is orthogonal to both $\overrightarrow{O A}$ and $\overrightarrow{O B}$. Hence, $\overrightarrow{O C}$ is perpendicular to ρ.

We are almost ready to explain $\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}$ in a way much more intuitive than Definition 2 . Recall that to unambiguously pinpoint a vector, we need to specify (i) its length, and (ii) its direction. Lemma 2 has given the length, and Corollary 2 has almost given its direction. Why did we say "almost"? Because there are two directed segments emanating from the origin that are perpendicular to the plane ρ in Figure 3b: besides the \boldsymbol{c} shown, $-\boldsymbol{c}$ is also perpendicular to ρ.

We can remove this last piece of ambiguity as follows. Let us see the plane ρ from the side such that \boldsymbol{c} shoots into our eyes. The direction of \boldsymbol{a} should turn counter-clockwise to the direction
of \boldsymbol{b} by an angle less than 180° (i.e., γ in Figure 3b). Notice that if we see the plane ρ from the wrong side, then \boldsymbol{a} needs to do so clockwise to reach \boldsymbol{b}. At this point, we have obtained a complete geometric description about $\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}$.

Appendix

Proof of Lemma 2

Let $\boldsymbol{a}=\left[a_{1}, a_{2}, a_{3}\right], \boldsymbol{b}=\left[b_{1}, b_{2}, b_{3}\right]$, and $\boldsymbol{c}=\left[c_{1}, c_{2}, c_{3}\right]$ (remember $\left.\boldsymbol{c}=\boldsymbol{a} \times \boldsymbol{b}\right)$. We will first establish another lemma which is interesting in its own right:

Lemma 4. $(|\boldsymbol{a} \| \boldsymbol{b}|)^{2}=|\boldsymbol{c}|^{2}+(\boldsymbol{a} \cdot \boldsymbol{b})^{2}$.
Proof. We will take a bruteforce approach to prove the lemma, by representing all the quantities in the target equation with coordinates.

$$
\begin{aligned}
(|\boldsymbol{a} \| \boldsymbol{b}|)^{2} & =\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right) \\
& =a_{1}^{2} b_{1}^{2}+a_{1}^{2} b_{2}^{2}+a_{1}^{2} b_{3}^{2}+a_{2}^{2} b_{1}^{2}+a_{2}^{2} b_{2}^{2}+a_{2}^{2} b_{3}^{2}+a_{3}^{2} b_{1}^{2}+a_{3}^{2} b_{2}^{2}+a_{3}^{2} b_{3}^{2} \\
|\boldsymbol{a} \times \boldsymbol{b}|^{2} & =c_{1}^{2}+c_{2}^{2}+c_{3}^{2} \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \\
& =a_{2}^{2} b_{3}^{2}+a_{3}^{2} b_{2}^{2}+a_{3}^{2} b_{1}^{2}+a_{1}^{2} b_{3}^{2}+a_{1}^{2} b_{2}^{2}+a_{2}^{2} b_{1}^{2}-2 a_{2} b_{2} a_{3} b_{3}-2 a_{1} b_{1} a_{3} b_{3}-2 a_{1} b_{1} a_{2} b_{2} \\
(\boldsymbol{a} \cdot \boldsymbol{b})^{2} & =\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \\
& =a_{1}^{2} b_{1}^{2}+a_{2}^{2} b_{2}^{2}+a_{3}^{2} b_{3}^{2}+2 a_{1} b_{1} a_{2} b_{2}+2 a_{1} b_{1} a_{3} b_{3}+2 a_{2} b_{2} a_{3} b_{3}
\end{aligned}
$$

The lemma thus follows.
Now we proceed to prove Lemma 2. From Lemma 1, we know that $\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \gamma$. Hence:

$$
\begin{aligned}
(|\boldsymbol{a} \| \boldsymbol{b}|)^{2}-(\boldsymbol{a} \cdot \boldsymbol{b})^{2} & =(|\boldsymbol{a} \| \boldsymbol{b}|)^{2}-(|\boldsymbol{a} \| \boldsymbol{b}|)^{2} \cos ^{2} \gamma \\
& =(|\boldsymbol{a} \| \boldsymbol{b}|)^{2}\left(1-\cos ^{2} \gamma\right) \\
& =(|\boldsymbol{a} \| \boldsymbol{b}|)^{2} \sin ^{2} \gamma .
\end{aligned}
$$

By combining the above with Lemma 4, we obtain:

$$
|\boldsymbol{c}|^{2}=(|\boldsymbol{a} \| \boldsymbol{b}|)^{2} \sin ^{2} \gamma
$$

Since $\sin \gamma \geq 0$ (recall that $\gamma \in\left[0^{\circ}, 180^{\circ}\right]$), it follows that $|\boldsymbol{c}|=|\boldsymbol{a}||\boldsymbol{b}| \sin \gamma$.

[^0]: ${ }^{1}$ This is to say that the angle we want here never exceeds 180 degrees.

