
Lecture Notes: Dot Product and Cross Product

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

1 Angle between Two Vectors

Definition 1. Given two non-zero vectors a = [a1, ..., ad] and b = [b1, ..., bd], we define their angle
as the smaller angle1 between the lines `a and `b, where `a is the line passing the origin and the
point (a1, ..., ad), and similarly `b is the line passing the origin and the point (b1, ..., bd).

The figure below shows an example in two-dimensional space. Points A and B have coordinates

(a1, a2) and (b1, b2), respectively. Thus, a is the vector defined by the directed segment
−→
OA, and

b is the vector defined by the directed segment
−−→
OB. The angle between a and b is the angle γ

as indicated in the figure between the two directed segments. Note that the angle of two vectors
always falls between 0 and 180 degrees.
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We say that vectors a and b are orthogonal if their angle is 90◦.

2 Dot Product Revisited

Recall that given two vectors a = [a1, ..., ad] and b = [b1, ..., bd], their dot product a · b is the real
value

∑d
i=1 aibi. This is sometimes also referred to as the inner product of a and b. Next, we will

prove an important but less trivial property of dot product:

Lemma 1. If a 6= 0 and b 6= 0, then a · b = |a||b| cos γ, where γ ∈ [0◦, 180◦] is the angle between
non-zero vectors a and b. .

Proof. Let
−→
OA and

−−→
OB be the directed segments that define a and b, respectively; see Figure 1.

We know that
−−→
AB defines the vector b− a. By the law of cosine, we have:

|−−→AB|2 = |−→OA|2 + |−−→OB|2 − 2|−→OA||−−→OB| cos γ ⇒

cos γ =
|−→OA|2 + |−−→OB|2 − |−−→AB|2

2|−→OA||−−→OB|
(1)

1This is to say that the angle we want here never exceeds 180 degrees.
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Figure 1: Proof of Lemma 1

On the other hand, we have:

|−→OA|2 = |a|2 = a · a
|−−→OB|2 = |b|2 = b · b
|−−→AB|2 = |b− a|2 = (b− a) · (b− a)

(by distributivity of dot product) = (b− a) · b− (b− a) · a
(by distributivity of dot product) = b · b− a · b− b · a + a · a

= b · b− 2a · b + a · a

we can derive from (1)

cos γ =
a · a + b · b− (b · b− 2a · b + a · a)

2|a||b| =
a · b
|a||b|

thus completing the proof.

Corollary 1. When a 6= 0 and b 6= 0, then a · b = 0 if and only if a and b are orthogonal.

Dot Product and Projection Length. Let us now see an important use of dot product:
computing the projection length of a line segment. Figure 2 shows 3 points P (−5, 7, 2), A(3, 20, 8),

and B(1, 10, 5). Let C be the projection of point A onto
−−→
PB. We want to calculate the length of−−→

PC, denoted as |−−→PC|.
Dot products provide an easy way to solve this problem. Let a be the vector defined by−→

PA, and ~b the vector defined by
−−→
PB. Clearly, a = [8, 13, 6] and b = [6, 3, 3]. It thus follows that

a ·b = [8 ·6+13 ·3+6 ·3] = 105. On the other hand, from Lemma 1, we know that a ·b = |a||b| cos γ,
where γ is the angle as shown in Figure 2b. As |b| =

√
54, we know that

|a|
√

54 cos γ = 105 ⇒
|a| cos γ = 105/

√
54.

Observe from Figure 2b |a| cos γ is exactly |−−→PC|.
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Figure 2: Using dot product to calculate projection lengths

3 Cross Product

Unlike dot product which is defined on vectors of arbitrary dimensionality d, cross product is defined
only on 3d vectors:

Definition 2. Given two 3d vectors a = [a1, a2, a3] and b = [b1, b2, b3], we define a × b, which is
called the cross product of a and b, as the vector c = [c1, c2, c3] where

c1 = a2b3 − a3b2
c2 = a3b1 − a1b3
c3 = a1b2 − a2b1.

The following equation offers an easy way to remember the above equations:

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .
It is easy to verify by definition the following properties of cross product:

• (Anti-Commutativity) a× b = −(b× a).

• (Distributivity) a× (b + c) = (a× b) + (a× c), and (b + c)× a = (b× a) + (c× a).

Note that in general cross product does not necessarily obey associativity. Here is a counter example:
i× i× j = 0× j = 0, but i× (i× j) = i× k = −j.

Geometry of Cross Products. Next we will gain a geometric understanding about cross prod-
ucts.

Lemma 2. Let γ ∈ [0◦, 180◦] be the angle between the directions of two non-zero vectors a and b,
and c = a× b. Then, |c| = |a||b| sin γ.

Proof. See appendix.

As an immediate corollary, we know that c = 0 in each of the following scenarios:

• a = 0 or b = 0.
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Figure 3: Illustration of cross product

• The angle between a and b is 0◦ or 180◦.

If c 6= 0, its length |c| has a beautiful explanation. Let O be the origin; and let
−→
OA and

−−→
OB

the directed segments that define a and b, respectively. Then, |c| is twice the area of the triangle

OAB; see Figure 3a (note that the length of directed segment
−−→
BD equals |b| sin γ).

Lemma 3. Let c = a× b. Then, a · c = 0 and b · c = 0.

Proof. Let a = [a1, a2, a3], b = [b1, b2, b3], and c = [c1, c2, c3]. We will prove only a · c = 0 because
an analogous argument shows b · c = 0.

a · c = a1c1 + a2c2 + a3c3

= a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1)
= 0.

The lemma leads to the following important corollary:

Corollary 2. Let c = a × b. If c 6= 0, then the directed segment
−−→
OC defining c is perpendicular

to the plane determined by the directed segments
−→
OA and

−−→
OB that define a and b, respectively (see

Figure 3b, where the plane is ρ).

Proof. Since c 6= 0, we know that (i) neither a nor b is 0, and (ii) the angle γ between the directions

of a and b is larger than 0◦ but smaller than 180◦. Hence,
−→
OA and

−−→
OB uniquely determine a plane

ρ. Since a · c = 0 and b · c = 0, we know that
−−→
OC is orthogonal to both

−→
OA and

−−→
OB. Hence,

−−→
OC

is perpendicular to ρ.

We are almost ready to explain c = a × b in a way much more intuitive than Definition 2.
Recall that to unambiguously pinpoint a vector, we need to specify (i) its length, and (ii) its
direction. Lemma 2 has given the length, and Corollary 2 has almost given its direction. Why
did we say “almost”? Because there are two directed segments emanating from the origin that are
perpendicular to the plane ρ in Figure 3b: besides the c shown, −c is also perpendicular to ρ.

We can remove this last piece of ambiguity as follows. Let us see the plane ρ from the side
such that c shoots into our eyes. The direction of a should turn counter-clockwise to the direction
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of b by an angle less than 180◦ (i.e., γ in Figure 3b). Notice that if we see the plane ρ from the
wrong side, then a needs to do so clockwise to reach b. At this point, we have obtained a complete
geometric description about c = a× b.

Appendix

Proof of Lemma 2

Let a = [a1, a2, a3], b = [b1, b2, b3], and c = [c1, c2, c3] (remember c = a× b). We will first establish
another lemma which is interesting in its own right:

Lemma 4. (|a||b|)2 = |c|2 + (a · b)2.

Proof. We will take a bruteforce approach to prove the lemma, by representing all the quantities
in the target equation with coordinates.

(|a||b|)2 = (a21 + a22 + a23)(b
2
1 + b22 + b23)

= a21b
2
1 + a21b

2
2 + a21b

2
3 + a22b

2
1 + a22b

2
2 + a22b

2
3 + a23b

2
1 + a23b

2
2 + a23b

2
3

|a× b|2 = c21 + c22 + c23

= (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2
= a22b

2
3 + a23b

2
2 + a23b

2
1 + a21b

2
3 + a21b

2
2 + a22b

2
1 − 2a2b2a3b3 − 2a1b1a3b3 − 2a1b1a2b2

(a · b)2 = (a1b1 + a2b2 + a3b3)
2

= a21b
2
1 + a22b

2
2 + a23b

2
3 + 2a1b1a2b2 + 2a1b1a3b3 + 2a2b2a3b3

The lemma thus follows.

Now we proceed to prove Lemma 2. From Lemma 1, we know that a · b = |a||b|cosγ. Hence:

(|a||b|)2 − (a · b)2 = (|a||b|)2 − (|a||b|)2 cos2 γ

= (|a||b|)2(1− cos2 γ)

= (|a||b|)2 sin2 γ.

By combining the above with Lemma 4, we obtain:

|c|2 = (|a||b|)2 sin2 γ.

Since sin γ ≥ 0 (recall that γ ∈ [0◦, 180◦]), it follows that |c| = |a||b| sin γ.
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