Lecture Notes: Vector Derivative

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

1 Scalar and Vector Functions

Recall that a function f takes an input, and yields an output. For example, in $f(t)=t^{2}+2 t$, the input is t, whereas the output is the real value resulting from the calculation $t^{2}+2 t$. We say that f is a scalar function if its output is a real value.

The output of a function can also be a vector. In this case, we refer to the function as a vector function. For instance, consider $\boldsymbol{f}(t)=\left[t^{2}, 2 t, t^{3}-t\right]$. Its input is t. For every fixed $t, \boldsymbol{f}(t)$ outputs a 3 d vector $\left[t^{2}, 2 t, t^{3}-t\right]$. We will adopt the convention of using boldfaces to represent vector functions.

An input to a function may consist of multiple parameters. For example, $f(x, y)=x^{2}+x y+y^{3}$ and $\boldsymbol{f}(x, y, z)=\left[x y z, y^{3} z+y^{2}\right]$. If a scalar function f takes d real values as its input, we say that f is a scalar field in \mathbb{R}^{d}. Similarly, if a vector function \boldsymbol{f} takes d real values as its input, we say that f is a vector field in \mathbb{R}^{d}. For example, the $f(x, y)$ and $\boldsymbol{f}(x, y, z)$ shown earlier are a scalar field in \mathbb{R}^{2} and a vector field in \mathbb{R}^{3}, respectively.

2 Limits and Continuity of One-Variable Vector Functions

Consider first a scalar function $f(t)$ that takes a single real value t as its input. Recall that its limit at t_{0} is defined as follows:

Definition 1. Suppose that a scalar function $f(t)$ is defined around ${ }^{1} t_{0}$ (but not necessarily at t_{0}). We say that

$$
\lim _{t \rightarrow t_{0}} f(t)=v
$$

if for any real $\delta>0$, we can find a real value $\epsilon>0$ such that $|f(t)-v|<\delta$ for all t satisfying $0<\left|t-t_{0}\right|<\epsilon$.

Now consider a vector function $\boldsymbol{f}(t)$ that takes a single real value t as its input. Suppose that the output of $\boldsymbol{f}(t)$ is a d-dimensional vector. By definition, we can write the output vector in its component form $\left[x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right]$. Now we extend Definition 1 to vector functions:

Definition 2. Suppose that $\boldsymbol{f}(t)=\left[x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right]$ is defined around t_{0} (but not necessarily at t_{0}). We say that

$$
\lim _{t \rightarrow t_{0}} \boldsymbol{f}(t)=\left[v_{1}, v_{2}, \ldots, v_{d}\right]
$$

if it holds for each $i \in[1, d]$ that $\lim _{t \rightarrow t_{0}} x_{i}(t)=v_{i}$.

[^0]For example, suppose that $\boldsymbol{f}(t)=\left[t^{2}, \sin (t) / t\right]$. Since $\lim _{t \rightarrow 0} t^{2}=0$ and $\lim _{t \rightarrow 0} \frac{\sin (t)}{t}=1$, we know that $\lim _{t \rightarrow 0} \boldsymbol{f}(t)=[0,1]$.

Definition 3. Suppose that $\boldsymbol{f}(t)=\left[x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right]$ is defined around t_{0} and at t_{0}. We say that $\boldsymbol{f}(t)$ is continuous at t_{0} if $\lim _{t \rightarrow t_{0}} \boldsymbol{f}(t)=\boldsymbol{f}\left(t_{0}\right)$.

For example, $\boldsymbol{f}(t)=\left[t^{2}, \sin (t) / t\right]$ is not continuous at 0 because the function is undefined at $t=0$. On the other hand, $\boldsymbol{f}(t)=\left[t^{2}, \sqrt{t}+1\right]$ is continuous at $t=0$. However, the following function is not continuous at $t=0$:

$$
\boldsymbol{f}(t)= \begin{cases}{\left[t^{2}, \sqrt{t}+1\right]} & \text { if } t \neq 0 \\ {[0,2]} & \text { if } t=0\end{cases}
$$

This is because $\lim _{t \rightarrow 0} \boldsymbol{f}(t)=[0,1] \neq \boldsymbol{f}(0)$.

3 Derivatives of Vector Functions

Recall that derivatives of scalar functions are defined as follows:
Definition 4. Suppose that scalar function $f(t)$ is defined around t_{0} and at t_{0}. If the following limit exists:

$$
\lim _{\Delta t \rightarrow 0} \frac{f\left(t_{0}+\Delta t\right)-f\left(t_{0}\right)}{\Delta t}
$$

then we say that

- $f(t)$ is differentiable at t_{0}.
- the above limit, denoted as $f^{\prime}\left(t_{0}\right)$, is the derivative of $f(t)$ at $t=t_{0}$.

We now extend the definition to vectors:
Definition 5. Suppose that vector function $\boldsymbol{f}(t)$ is defined around t_{0} and at t_{0}. If the following limit exists:

$$
\lim _{\Delta t \rightarrow 0} \frac{\boldsymbol{f}\left(t_{0}+\Delta t\right)-\boldsymbol{f}\left(t_{0}\right)}{\Delta t}
$$

then we say that

- $\boldsymbol{f}(t)$ is differentiable at t_{0}.
- the above limit, denoted as $\boldsymbol{f}^{\prime}\left(t_{0}\right)$, is the derivative of $\boldsymbol{f}(t)$ at $t=t_{0}$.

The next important lemma provides another view of the above definition through components:
Lemma 1. Suppose that $\boldsymbol{f}(t)=\left[x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right]$ is differentiable at t_{0} such that $\boldsymbol{f}^{\prime}\left(t_{0}\right)=$ $\left[y_{1}\left(t_{0}\right), y_{2}\left(t_{0}\right), \ldots, y_{d}\left(t_{0}\right)\right]$. Then, $y_{i}\left(t_{0}\right)=x_{i}^{\prime}\left(t_{0}\right)$ for each $i \in[1, d]$.

Proof. By definition of vector subtraction:

$$
\boldsymbol{f}\left(t_{0}+\Delta t\right)-\boldsymbol{f}\left(t_{0}\right)=\left[x_{1}\left(t_{0}+\Delta t\right)-x_{1}\left(t_{0}\right), x_{2}\left(t_{0}+\Delta t\right)-x_{2}\left(t_{0}\right), \ldots, x_{d}\left(t_{0}+\Delta t\right)-x_{d}\left(t_{0}\right)\right]
$$

Since

$$
\begin{equation*}
\lim _{\Delta t \rightarrow 0} \frac{\boldsymbol{f}\left(t_{0}+\Delta t\right)-\boldsymbol{f}\left(t_{0}\right)}{\Delta t}=\left[y_{1}\left(t_{0}\right), y_{2}\left(t_{0}\right), \ldots, y_{d}\left(t_{0}\right)\right] \tag{1}
\end{equation*}
$$

we know

$$
\begin{aligned}
& \lim _{\Delta t \rightarrow 0} \frac{\boldsymbol{f}\left(t_{0}+\Delta t\right)-\boldsymbol{f}\left(t_{0}\right)}{\Delta t} \\
= & \lim _{\Delta t \rightarrow 0} \frac{\left[x_{1}\left(t_{0}+\Delta t\right)-x_{1}\left(t_{0}\right), x_{2}\left(t_{0}+\Delta t\right)-x_{2}\left(t_{0}\right), \ldots, x_{d}\left(t_{0}+\Delta t\right)-x_{d}\left(t_{0}\right)\right]}{\Delta t} \\
\text { (scalar multiplication) }= & \lim _{\Delta t \rightarrow 0}\left[\frac{x_{1}\left(t_{0}+\Delta t\right)-x_{1}\left(t_{0}\right)}{\Delta t}, \frac{x_{2}\left(t_{0}+\Delta t\right)-x_{2}\left(t_{0}\right)}{\Delta t}, \ldots, \frac{x_{1}\left(t_{0}+\Delta t\right)-x_{1}\left(t_{0}\right)}{\Delta t}\right] \\
(\text { from }(1)) & =\left[y_{1}\left(t_{0}\right), y_{2}\left(t_{0}\right), \ldots, y_{d}\left(t_{0}\right)\right] .
\end{aligned}
$$

It thus follows from Definition 2 that, for each $i \in[1, d]$:

$$
\lim _{\Delta t \rightarrow 0} \frac{x_{i}\left(t_{0}+\Delta t\right)-x_{i}\left(t_{0}\right)}{\Delta t}=y_{i}\left(t_{0}\right) .
$$

The left hand side of the above is precisely $x_{i}^{\prime}\left(t_{0}\right)$ by Definition 4 . We thus complete the proof.
The above lemma provides a convenient and intuitive way to compute the derivative of a vector function. For example, consider $f(t)=\left[\sin ^{2} t, \cos ^{2} t\right]$. Then we immediately know $\boldsymbol{f}^{\prime}(t)=$ $[2 \sin (t) \cos (t),-2 \sin (t) \cos (t)]$.

Vector derivatives obey some rules that are reminiscent of the corresponding rules on scalar functions:

1. $(\boldsymbol{f}(t)+\boldsymbol{g}(t))^{\prime}=\boldsymbol{f}^{\prime}(t)+\boldsymbol{g}^{\prime}(t)$.
2. $(\boldsymbol{f}(t) \cdot \boldsymbol{g}(t))^{\prime}=\boldsymbol{f}^{\prime}(t) \cdot \boldsymbol{g}(t)+\boldsymbol{f}(t) \cdot \boldsymbol{g}^{\prime}(t)$.
3. Suppose that the outputs of $\boldsymbol{f}(t)$ and $\boldsymbol{g}(t)$ are 3d vectors. Then, $(\boldsymbol{f}(t) \times \boldsymbol{g}(t))^{\prime}=\boldsymbol{f}^{\prime}(t) \times$ $\boldsymbol{g}(t)+\boldsymbol{f}(t) \times \boldsymbol{g}^{\prime}(t)$.

Next, we will prove Rules 1 and 2 in full. The proof for Rule 3 is very tedious but not difficult; we will outline its main ideas.

Proof of Rule 1. Let $\boldsymbol{f}(t)=\left[x_{1}(t), \ldots, x_{d}(t)\right]$ and $\boldsymbol{g}(t)=\left[y_{1}(t), \ldots, y_{d}(t)\right]$. From Lemma 1, we know that $\boldsymbol{f}^{\prime}(t)=\left[x_{1}^{\prime}(t), \ldots, x_{d}^{\prime}(t)\right]$ and $\boldsymbol{g}^{\prime}(t)=\left[y_{1}^{\prime}(t), \ldots, y_{d}^{\prime}(t)\right]$. We have:

$$
\begin{aligned}
(\boldsymbol{f}(t)+\boldsymbol{g}(t))^{\prime} & =\left[x_{1}(t)+y_{1}(t), \ldots, x_{d}(t)+y_{d}(t)\right]^{\prime} \\
(\text { by Lemma } 1) & =\left[\left(x_{1}(t)+y_{1}(t)\right)^{\prime}, \ldots,\left(x_{d}(t)+y_{d}(t)\right)^{\prime}\right] \\
& =\left[x_{1}^{\prime}(t)+y_{1}^{\prime}(t), \ldots, x_{d}^{\prime}(t)+y_{d}^{\prime}(t)\right] \\
& =\boldsymbol{f}^{\prime}(t)+\boldsymbol{g}^{\prime}(t) .
\end{aligned}
$$

Proof of Rule 2. Let $\boldsymbol{f}(t)=\left[x_{1}(t), \ldots, x_{d}(t)\right]$ and $\boldsymbol{g}(t)=\left[y_{1}(t), \ldots, y_{d}(t)\right]$. From Lemma 1, we know that $\boldsymbol{f}^{\prime}(t)=\left[x_{1}^{\prime}(t), \ldots, x_{d}^{\prime}(t)\right]$ and $\boldsymbol{g}^{\prime}(t)=\left[y_{1}^{\prime}(t), \ldots, y_{d}^{\prime}(t)\right]$. We have:

$$
\begin{aligned}
(\boldsymbol{f}(t) \cdot \boldsymbol{g}(t))^{\prime} & =\left(\sum_{i=1}^{d} x_{i}(t) \cdot y_{i}(t)\right)^{\prime} \\
& =\sum_{i=1}^{d}\left(x_{i}^{\prime}(t) \cdot y_{i}(t)+x_{i}(t) \cdot y_{i}^{\prime}(t)\right) \\
& =\sum_{i=1}^{d} x_{i}^{\prime}(t) \cdot y_{i}(t)+\sum_{i=1}^{d} x_{i}(t) \cdot y_{i}^{\prime}(t) \\
& =\boldsymbol{f}^{\prime}(t) \cdot \boldsymbol{g}(t)+\boldsymbol{f}(t) \cdot \boldsymbol{g}^{\prime}(t) .
\end{aligned}
$$

Proof of Rule 3 (Sketch). Let $\boldsymbol{f}(t)=\left[x_{1}(t), x_{2}(t), x_{3}(t)\right]$ and $\boldsymbol{g}(t)=\left[y_{1}(t), y_{2}(t), y_{3}(t)\right]$. The key to the proof is to write out both sides of Rule 2 in their component forms. For the left hand side, we know:

$$
\begin{aligned}
& (\boldsymbol{f}(t) \times \boldsymbol{g}(t))^{\prime} \\
= & {\left[x_{2}(t) y_{3}(t)-x_{3}(t) y_{2}(t), x_{3}(t) y_{1}(t)-x_{1}(t) y_{3}(t), x_{1}(t) y_{2}(t)-x_{2}(t) y_{1}(t)\right]^{\prime} } \\
= & {\left[\left(x_{2}(t) y_{3}(t)\right)^{\prime}-\left(x_{3}(t) y_{2}(t)\right)^{\prime},\left(x_{3}(t) y_{1}(t)\right)^{\prime}-\left(x_{1}(t) y_{3}(t)\right)^{\prime},\left(x_{1}(t) y_{2}(t)\right)^{\prime}-\left(x_{2}(t) y_{1}(t)\right)^{\prime}\right] . }
\end{aligned}
$$

You want to unfold the right hand side $\boldsymbol{f}^{\prime}(t) \times \boldsymbol{g}(t)+\boldsymbol{f}(t) \times \boldsymbol{g}^{\prime}(t)$ into similar forms. Then, you will see that both sides are equivalent.

[^0]: ${ }^{1}$ This means that there is a $\rho>0$ such that $f(t)$ is defined for t satisfying $0<\left|t-t_{0}\right|<\rho$.

