Lecture Notes: Geometry of Vectors

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

Given an integer $d \geq 1$, we use \mathbb{R}^{d} to denote the d-dimensional space where each dimension has a domain of \mathbb{R} (recall that \mathbb{R} is the set of real values).

Recall that we have defined a vector as either a $d \times 1$ matrix (column vector) or a $1 \times d$ matrix (row vector). Our discussion henceforth will by default refer to row vectors simply as "vectors" (but the discussion can be generalized to column vectors in an obvious manner). Henceforth, a d-dimensional vector has the form $\left[v_{1}, v_{2}, \ldots, v_{d}\right]$, where each component $v_{i}(1 \leq i \leq d)$ is a real value. Boldfaces will be used to denote vectors, e.g., $\boldsymbol{v}=\left[v_{1}, v_{2}, \ldots, v_{d}\right]$. We use $\mathbf{0}$ to represent the specific vector $[0,0, \ldots, 0]$ called the zero vector. Recall that the length, also called the norm, of a vector $\boldsymbol{v}=\left[v_{1}, v_{2}, \ldots, v_{d}\right]$ is defined to be

$$
|\boldsymbol{v}|=\sqrt{\sum_{i=1}^{d} v_{i}^{2}}
$$

We refer to \boldsymbol{v} as a unit vector if $|\boldsymbol{v}|=1$.
Let $p_{1}=\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ and $p_{2}=\left(b_{1}, b_{2}, \ldots, b_{d}\right)$ be two points in \mathbb{R}^{d}. They define a directed segment $\overrightarrow{p_{1} p_{2}}$ which is the segment connecting p_{1} and p_{2}, but also carrying a direction from p_{1} to p_{2}. As shown below, every directed segment defines a vector:

Definition 1. Given a directed segment $\overrightarrow{p_{1} p_{2}}$ where the points $p_{1}=\left(a_{1}, a_{2}, \ldots, a_{d}\right), p_{2}=$ $\left(b_{1}, b_{2}, \ldots, b_{d}\right)$, we say that it defines a vector $\left[v_{1}, \ldots, v_{d}\right]$ where

$$
v_{i}=b_{i}-a_{i}
$$

for all $i \in[1, d]$.
For example, consider the segment $\overrightarrow{A B}$ shown below. They define the vector [5, 2]. Note that the length of this vector is precisely the length of $\overrightarrow{A B}$. For convenience, we will simply use the term "vector $\overrightarrow{p_{1} p_{2}}$ " to refer to the vector it defines. For example, $[5,2]$ is the vector $\overrightarrow{A B}$.

The above geometry offers an intuitive understanding about vector additions and subtractions, as shown next:

Lemma 1. Suppose that $\overrightarrow{P A}$ and $\overrightarrow{A B}$ define vectors \boldsymbol{a} and \boldsymbol{b}, respectively. Then, $\overrightarrow{P B}$ defines vector $\boldsymbol{a}+\boldsymbol{b}$; see Figure $1 a$.

Figure 1: Geometric view of vector addition and subtraction

Proof. Suppose that $\boldsymbol{a}=\left[a_{1}, a_{2}, \ldots, a_{d}\right]$ and $\boldsymbol{b}=\left[b_{1}, b_{2}, \ldots, b_{d}\right]$. Also, assume that $P=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$, $A=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$, and $B=\left(y_{1}, y_{2}, \ldots, y_{d}\right)$.

Because $\overrightarrow{P A}$ and $\overrightarrow{A B}$ define \boldsymbol{a} and \boldsymbol{b} respectively, we know

$$
\begin{aligned}
a_{i} & =x_{i}-p_{i}, \forall i \in[1, d] \\
b_{i} & =y_{i}-x_{i}, \forall i \in[1, d] .
\end{aligned}
$$

It thus follows that

$$
a_{i}+b_{i}=y_{i}-p_{i}, \forall i \in[1, d] .
$$

Therefore, $\overrightarrow{P B}$ defines $\boldsymbol{a}+\boldsymbol{b}$.
Corollary 1. Suppose that $\overrightarrow{P A}$ and $\overrightarrow{P B}$ define \boldsymbol{a} and \boldsymbol{b}, respectively. Then, $\overrightarrow{A B}$ defines $\boldsymbol{b}-\boldsymbol{a}$; see Figure 16.

Finally, when $d=3$, we define 3 special unit vectors:

$$
\boldsymbol{i}=[1,0,0], \boldsymbol{j}=[0,1,0], \boldsymbol{k}=[0,0,1] .
$$

This allows us to represent a 3 d vector $\boldsymbol{v}=\left[v_{1}, v_{2}, v_{3}\right]$ as $\boldsymbol{v}=v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}+v_{3} \boldsymbol{k}$ (note that all the operators in this equation are now well defined). Similarly, when $d=2$, we define 2 special unit vectors:

$$
\boldsymbol{i}=[1,0], \boldsymbol{j}=[0,1] .
$$

A 2 d vector $\boldsymbol{v}=\left[v_{1}, v_{2}\right]$ can therefore be represented as $\boldsymbol{v}=v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}$.

