Lecture Notes: Dimension, Span, and Linear Transformation

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

1 Dimension of a Set of Vectors

Let V be a possibly infinite set of vectors. These vectors are either all row vectors or all column vectors of the same length. We define the concepts dimension and basis for V as follows:

Definition 1. The dimension of V is the maximum number d of vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d}$ we can find in V such that $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d}$ are linearly independent. The set $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d}\right\}$ is a basis of V.

Example 1. Let V be the set of all possible 1×2 vectors. V has dimension 2 . The set of vectors $[1,0],[0,1]$ is a basis of V. Note that bases are not unique: e.g., $[1,0],[0,2]$ form another basis.

Example 2. Let V be the set of all possible 1×2 vectors $[x, y]$ satisfying $y=3 x$. V has dimension 1. A basis is $[1,3]$. You can verify that any two vectors in V must be linearly dependent.

Immediately, we have:
Lemma 1. Let $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d}\right\}$ be a basis of V. Any vector $\boldsymbol{u} \in V$ is a linear combination of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{d}$.

The proof should have become trivial for you at this moment. You are encouraged to verify the lemma on the V in Examples 1 and 2.

When V is finite, its dimension and basis can be conveniently understood by resorting to a matrix. For example, suppose that V has $m 1 \times n$ vectors. Define an $m \times n$ matrix \boldsymbol{M} whose i-th row is the i-th vector of V, for each $1 \leq i \leq m$. Then:

- The dimension d of V is simply the rank of \boldsymbol{M}.
- A basis of V can be any set of d rows in M which are linearly independent.

2 Span

Let B be a possibly infinite set of vectors. These vectors are either all row vectors or all column vectors of the same length. We define the span of B as follows:

Definition 2. The span of B is the set of vectors that can be obtained as linear combinations of the vectors in B.

Note that the span V of B has an infinite size, and that $B \subseteq V . V$ is sometimes also referred to as the vector space determined by B.

Example 3. Let $B=\{[1,0],[0,1]\}$; the span of B is the set of all possible 1×2 vectors. As another example, let $B=\{[1,0],[0,1],[2,3]\}$; the span of B is still the set of all possible 1×2 vectors.

Example 4. Let $B=\{[1,0,0],[0,1,0]\}$; the span of B is the set of all possible 1×3 vectors $[x, y, z]$ satisfying $z=0$. As another example, Let $B=\{[1,0,0],[0,1,0],[2,3,0]\}$; the span of B still the same. But if $B=\{[1,0,0],[0,1,0],[0,0,1]\}$, then the span of B becomes the set of all possible 1×3 vectors.

Lemma 2. Let V be the span of B. The dimension of V equals the dimension of B.
Proof. Let d_{V} be the dimension of V, and d_{B} be the dimension of B. To establish the lemma, we need to prove two directions:

Direction 1: $d_{V} \geq d_{B}$. Suppose on the contrary that $d_{V}<d_{B}$. Then, any set of at least $d_{V}+1$ vectors in V must be linearly dependent. As $B \subseteq V$, it follows that any set of $d_{B} \geq d_{V}+1$ vectors in B must be linearly dependent. But this contradicts the fact that the dimension of B is d_{B}.

Direction 2: $d_{B} \geq d_{V}$. Let $\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{d_{B}}\right\}$ be a basis of B. By definition of span, we know that any vector in V is a linear combination of $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{d_{B}}$. Hence, $d_{B} \geq d_{V}$, by definition of d_{V}.

You are encouraged to verify the lemma on the B in Examples 3 and 4 . Next we give a slightly more sophisticated example with an infinite B.

Example 5. Consider that B is the set of vectors $[x, y]$ satisfying

$$
\begin{aligned}
& 0 \leq x \leq 1 \\
& 0 \leq y \leq 1
\end{aligned}
$$

The dimension of B is 2 . What is the span of B ? The answer is the set V of all possible 1×2 vectors. The dimension of V is 2 , too.

3 Linear Transformation

Let V_{1} be a set of $n \times 1$ vectors. Let \boldsymbol{A} be an $m \times n$ matrix. Then, given a vector $\boldsymbol{v} \in V_{1}$, define function

$$
f(v)=A v
$$

Note that $\boldsymbol{f}(\boldsymbol{v})$ is an $m \times 1$ vector. Define:

$$
\begin{equation*}
V_{2}=\left\{\boldsymbol{f}(\boldsymbol{v}) \mid \boldsymbol{v} \in V_{1}\right\} \tag{1}
\end{equation*}
$$

We say that function \boldsymbol{f} is a linear transformation from V_{1} to V_{2}. Also, we refer to $\boldsymbol{f}(\boldsymbol{v})$ as the image of \boldsymbol{v}.

Example 6. Let V_{1} be all the 2×1 vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$. Define $\boldsymbol{f}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}u \\ v \\ w\end{array}\right]$ where

$$
\begin{aligned}
u & =2 x+y \\
v & =-x-y \\
w & =3 x+4 y
\end{aligned}
$$

The linear transformation can also be written as

$$
\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & -1 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Lemma 3. The dimension of V_{2} is at most the dimension of V_{1}.
Proof. Let d be the dimension of V_{1}, and $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{d}\right\}$ be a basis of V_{1}. We will show that any vector $\boldsymbol{u} \in V_{2}$ is a linear combination of $\boldsymbol{f}\left(\boldsymbol{v}_{1}\right), \ldots, \boldsymbol{f}\left(\boldsymbol{v}_{d}\right)$. This will complete the proof.

Without loss of generate, suppose that $\boldsymbol{u}=\boldsymbol{A} \boldsymbol{v}$ for some $\boldsymbol{v} \in V_{1}$. If $\boldsymbol{v}=\boldsymbol{v}_{i}$ for some $1 \leq i \leq d$, then

$$
\boldsymbol{u}=1 \cdot \boldsymbol{A} \boldsymbol{v}_{i}+0 \cdot \sum_{j \neq i} \boldsymbol{A} \boldsymbol{v}_{j}=1 \cdot \boldsymbol{f}\left(\boldsymbol{v}_{i}\right)+0 \cdot \sum_{j \neq i} \boldsymbol{f}\left(\boldsymbol{v}_{j}\right) ;
$$

and our claim is true.
Now consider that $\boldsymbol{v} \notin\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{d}\right\}$. We know that \boldsymbol{v} must be a linear combination of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{d}$:

$$
\boldsymbol{v}=\sum_{i=1}^{d} c_{i} \cdot \boldsymbol{v}_{i}
$$

for some real-valued constants c_{1}, \ldots, c_{d}. Thus:

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{v} & =\sum_{i=1}^{d} c_{i} \cdot \boldsymbol{A} \boldsymbol{v}_{i} \\
\Rightarrow \boldsymbol{u} & =\sum_{i=1}^{d} c_{i} \cdot \boldsymbol{f}\left(\boldsymbol{v}_{i}\right)
\end{aligned}
$$

The lemma confirms the following intuition: no new information is generated by the linear transformation. To understand this, consider Example 6 again. V_{1} clearly has dimension 2. The set V_{2} obtained by \boldsymbol{f} contains 3×1 vectors. So it may appear that V_{2} had a dimension of 3 . The above lemma shows that this is impossible: indeed, the dimension of V_{2} is 2 .

