Lecture Notes: Dimension, Span, and Linear Transformation

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Dimension of a Set of Vectors

Let V be a possibly infinite set of vectors. These vectors are either all row vectors or all column vectors of the same length. We define the concepts *dimension* and *basis* for V as follows:

Definition 1. The dimension of V is the maximum number d of vectors $v_1, v_2, ..., v_d$ we can find in V such that $v_1, v_2, ..., v_d$ are linearly independent. The set $\{v_1, v_2, ..., v_d\}$ is a basis of V.

Example 1. Let V be the set of all possible 1×2 vectors. V has dimension 2. The set of vectors [1,0], [0,1] is a basis of V. Note that bases are not unique: e.g., [1,0], [0,2] form another basis. \Box

Example 2. Let V be the set of all possible 1×2 vectors [x, y] satisfying y = 3x. V has dimension 1. A basis is [1,3]. You can verify that any two vectors in V must be linearly dependent.

Immediately, we have:

Lemma 1. Let $\{v_1, v_2, ..., v_d\}$ be a basis of V. Any vector $u \in V$ is a linear combination of $v_1, v_2, ..., v_d$.

The proof should have become trivial for you at this moment. You are encouraged to verify the lemma on the V in Examples 1 and 2.

When V is finite, its dimension and basis can be conveniently understood by resorting to a matrix. For example, suppose that V has $m \ 1 \times n$ vectors. Define an $m \times n$ matrix M whose *i*-th row is the *i*-th vector of V, for each $1 \le i \le m$. Then:

- The dimension d of V is simply the rank of M.
- A basis of V can be any set of d rows in M which are linearly independent.

2 Span

Let B be a possibly infinite set of vectors. These vectors are either all row vectors or all column vectors of the same length. We define the *span* of B as follows:

Definition 2. The span of B is the set of vectors that can be obtained as linear combinations of the vectors in B.

Note that the span V of B has an infinite size, and that $B \subseteq V$. V is sometimes also referred to as the vector space determined by B.

Example 3. Let $B = \{[1,0], [0,1]\}$; the span of B is the set of all possible 1×2 vectors. As another example, let $B = \{[1,0], [0,1], [2,3]\}$; the span of B is still the set of all possible 1×2 vectors. \Box

Example 4. Let $B = \{[1, 0, 0], [0, 1, 0]\}$; the span of B is the set of all possible 1×3 vectors [x, y, z] satisfying z = 0. As another example, Let $B = \{[1, 0, 0], [0, 1, 0], [2, 3, 0]\}$; the span of B still the same. But if $B = \{[1, 0, 0], [0, 1, 0], [0, 0, 1]\}$, then the span of B becomes the set of all possible 1×3 vectors.

Lemma 2. Let V be the span of B. The dimension of V equals the dimension of B.

Proof. Let d_V be the dimension of V, and d_B be the dimension of B. To establish the lemma, we need to prove two directions:

Direction 1: $d_V \ge d_B$. Suppose on the contrary that $d_V < d_B$. Then, any set of at least $d_V + 1$ vectors in V must be linearly dependent. As $B \subseteq V$, it follows that any set of $d_B \ge d_V + 1$ vectors in B must be linearly dependent. But this contradicts the fact that the dimension of B is d_B .

Direction 2: $d_B \ge d_V$. Let $\{\boldsymbol{b}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_{d_B}\}$ be a basis of B. By definition of span, we know that any vector in V is a linear combination of $\boldsymbol{b}_1, \boldsymbol{b}_2, ..., \boldsymbol{b}_{d_B}$. Hence, $d_B \ge d_V$, by definition of d_V . \Box

You are encouraged to verify the lemma on the B in Examples 3 and 4. Next we give a slightly more sophisticated example with an infinite B.

Example 5. Consider that B is the set of vectors [x, y] satisfying

$$0 \le x \le 1$$
$$0 \le y \le 1$$

The dimension of B is 2. What is the span of B? The answer is the set V of all possible 1×2 vectors. The dimension of V is 2, too.

3 Linear Transformation

Let V_1 be a set of $n \times 1$ vectors. Let A be an $m \times n$ matrix. Then, given a vector $v \in V_1$, define function

$$f(v) = Av$$

Note that f(v) is an $m \times 1$ vector. Define:

$$V_2 = \left\{ \boldsymbol{f}(\boldsymbol{v}) \mid \boldsymbol{v} \in V_1 \right\}$$
(1)

We say that function f is a *linear transformation* from V_1 to V_2 . Also, we refer to f(v) as the *image* of v.

Example 6. Let
$$V_1$$
 be all the 2×1 vectors $\begin{bmatrix} x \\ y \end{bmatrix}$. Define $f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$ where
 $u = 2x + y$
 $v = -x - y$
 $w = 3x + 4y$

The linear transformation can also be written as

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

Lemma 3. The dimension of V_2 is at most the dimension of V_1 .

Proof. Let d be the dimension of V_1 , and $\{v_1, ..., v_d\}$ be a basis of V_1 . We will show that any vector $u \in V_2$ is a linear combination of $f(v_1), ..., f(v_d)$. This will complete the proof.

Without loss of generate, suppose that $\boldsymbol{u} = \boldsymbol{A}\boldsymbol{v}$ for some $\boldsymbol{v} \in V_1$. If $\boldsymbol{v} = \boldsymbol{v}_i$ for some $1 \leq i \leq d$, then

$$oldsymbol{u} = 1 \cdot oldsymbol{A} oldsymbol{v}_i + 0 \cdot \sum_{j \neq i} oldsymbol{A} oldsymbol{v}_j = 1 \cdot oldsymbol{f}(oldsymbol{v}_i) + 0 \cdot \sum_{j \neq i} oldsymbol{f}(oldsymbol{v}_j);$$

and our claim is true.

Now consider that $v \notin \{v_1, ..., v_d\}$. We know that v must be a linear combination of $v_1, ..., v_d$:

$$oldsymbol{v} = \sum_{i=1}^d c_i \cdot oldsymbol{v}_i$$

for some real-valued constants $c_1, ..., c_d$. Thus:

$$egin{array}{rcl} m{A}m{v}&=&\sum_{i=1}^d c_i\cdotm{A}m{v}_i\ \Rightarrowm{u}&=&\sum_{i=1}^d c_i\cdotm{f}(m{v}_i) \end{array}$$

The lemma confirms the following intuition: no new information is generated by the linear transformation. To understand this, consider Example 6 again. V_1 clearly has dimension 2. The set V_2 obtained by \mathbf{f} contains 3×1 vectors. So it may appear that V_2 had a dimension of 3. The above lemma shows that this is impossible: indeed, the dimension of V_2 is 2.