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1 Orthogonal Matrix

Definition 1. Let u = [ui1] and v = [vi1] be two n× 1 vectors. Define the dot product between
them — denoted as u · v — as the real value

∑n
i=1 ui1vi1.

Similarly, let u = [u1j ] and v = [v1j ] be two 1 × n vectors. Define the dot product between
them — again denoted as u · v — as the real value

∑n
j=1 u1jv1j.

Definition 2. Let u be a vector. Define |u| =
√
u · u, and call it the norm or the length of u.

Definition 3. Let S be a set of non-zero (column or row) vectors v1, v2, ..., vk of the same
dimensionality. We say that S is orthogonal if vi · vj = 0 for any i 6= j. Furthermore, we say
that S is orthonormal if (i) S is orthogonal, and (ii) |vi| = 1 for any i ∈ [1, k].

For example, 
 −1

1
0

 ,
 1

1
2

 ,
 −1
−1
1


is orthogonal but not orthonormal. If, however, we scale each of the above vectors to have length
1, then the resulting vector set becomes orthonormal:
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Lemma 1. An orthogonal set of vectors must be linearly independent.

Proof. Suppose that S = {v1, v2, ..., vk}. Assume, on the contrary, that S is not linearly inde-
pendent. Hence, there exist real values c1, c2, ..., ck that are not all zero, and make the following
hold:

c1v1 + c2v2 + ...+ ckvk = 0.

Suppose, without loss of generality, that ci 6= 0 for some i ∈ [1, k]. Then, we multiply both sides of
the above equation by vi, and obtain:

c1v1 · vi + c2v2 · vi + ...+ ckvk · vi = 0 ⇒
civi · vi = 0.

The above equation contradicts the fact that ci 6= 0 and vi is a non-zero vector.
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Definition 4. An n×n matrix A is orthogonal if (i) its inverse A−1 exists, and (ii) AT = A−1.

Example 1. Consider A =

[
cos θ − sin θ
sin θ cos θ

]
. It is orthogonal because AT = A−1 =[

cos θ sin θ
− sin θ cos θ

]
. The following is a 3× 3 orthogonal matrix:

 2/3 1/3 2/3
−2/3 2/3 1/3
1/3 2/3 −2/3



An orthogonal matrix must be formed by an orthonormal set of vectors:

Lemma 2. Let A be an n× n matrix with row vectors r1, r2, ..., rn, and column vectors c1, c2,
..., cn. Both the following statements are true:

• A is orthogonal if and only if {r1, r2, ..., rn} is orthonormal.

• A is orthogonal if and only if {c1, c2, ..., cn} is orthonormal.

Proof. We will prove only the first statement because applying the same argument on AT proves
the second. Let B = AAT . Denote by bij the element of B at the i-th row and j-th column. We
know that bij = ri · rj (note that the j-th column of AT has the same components as rj). A is
orthogonal if and only if B is an identity matrix, which in turn is true if and only if bij = 1 when
i = j, and bij = 0 otherwise. The lemma thus follows.

2 Symmetric Matrix

Recall that an n× n matrix A is symmetric if A = AT . In this section, we will learn several nice
properties of such matrices.

Lemma 3. All the eigenvalues of a symmetric matrix must be real values (i.e., they cannot be
complex numbers). All eigenvectors of the matrix must contain only real values.

We omit the proof of the lemma (which is not difficult, but requires the definition of matrices
on complex numbers). Note that the above lemma is not true for general square matrices (i.e., it
is possible for an eigenvalue to be a complex number).

Lemma 4. Let λ1 and λ2 be two different eigenvalues of a symmetric matrix A. Also, suppose
that x1 is an eigenvector of A corresponding to λ1, and x2 is an eigenvector of A corresponding
to λ2. It must holds that x1 · x2 = 0.

Proof. By definition of eigenvalue and eigenvector, we know:

Ax1 = λ1x1 (1)

Ax2 = λ2x2 (2)
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From (1), we have

x1
TAT = λ1x1

T ⇒
x1

TA = λ1x1
T ⇒

x1
TAx2 = λ1x1

Tx2 ⇒ (by (2))

x1
Tλ2x2 = λ1x1

Tx2 ⇒
x1

Tx2(λ1 − λ2) = 0 ⇒ (by λ1 6= λ2)

x1
Tx2 = 0.

The lemma then follows from the fact that x1 · x2 = x1
Tx2.

Example 2. Consider

A =

 0 −1 1
−1 0 1
1 1 0


We know that A has two eigenvalues λ1 = 1 and λ2 = −2.

For eigenvalue λ1 = 1, all the eigenvectors can be represented as x =

 x1
x2
x3

 satisfying:

x1 = v − u, x2 = u, x3 = v

with u, v ∈ R. Setting (u, v) to (1, 0) and (0, 1) respectively gives us two linearly independent
eigenvectors:

x1 =

 −1
1
0

 ,x2 =

 1
0
1



For eigenvalue λ2 = −2, all the eigenvectors can be represented as x =

 x1
x2
x3

 satisfying:

x1 = −t, x2 = −t, x3 = t

with t ∈ R. Setting t = 1 gives us another eigenvector:

x3 =

 −1
−1
1


Vectors x1, x2, and x3 are linearly independent. According to Lemma 4, both x1 · x3 and x2 · x3

must be 0, which is indeed the case.

From an earlier lecture, we already know that every symmetric matrix can be diagonalized
because it definitely has n linearly independent eigenvectors. The next lemma strengthens this
fact:
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Lemma 5. Every n× n symmetric matrix has an orthogonal set of n eigenvectors.

We omit the proof of the lemma (which is rather non-trivial). Note that n eigenvectors in the
lemma must be linearly independent, according to Lemma 1.

Example 3. Let us consider again the matrix A in Example 2. We have obtained eigenvectors
x1,x2,x3. Clearly, they do not constitute an orthogonal set because x1,x2 are not orthogonal.
We will replace x2 with a different x2

′ that is still an eigenvector of A for eigenvalue λ1 = 1, and
is orthogonal to x1.

From Example 2, we know that all eigenvectors corresponding to λ1 have the form

 v − u
u
v

.

For such a vector to be orthogonal to x1 =

 −1
1
0

, we need:

(−1)(v − u) + u = 0 ⇒
v = 2u

As you can see, there are infinitely many such vectors, any of which can be x2
′ except

 0
0
0

. To

produce one, we can choose u = 1, v = 2, which gives x2
′ =

 1
1
2

.

{x1,x
′
2,x3} is thus an orthogonal set of eigenvectors of A.

Corollary 1. Every n× n symmetric matrix has an orthonormal set of n eigenvectors.

Proof. The orthonormal set can be obtained by scaling all vectors in the orthogonal set of Lemma 5
to have length 1.

Now we prove an important lemma about symmetric matrices.

Lemma 6. Let A be an n × n symmetric matrix. There exist an orthogonal matrix Q such that
A = Q diag [λ1, λ2, ..., λn]Q−1, where λ1, λ2, ..., λn are eigenvalues of A.

Proof. From an earlier lecture, we know that given a set of linearly independent eigenvectors
v1,v2, ...,vn corresponding to eigenvalues λ1, λ2, ..., λn respectively, we can produce Q by plac-
ing vi as the i-th column of Q, for each i ∈ [1, n], such that A = Q diag [λ1, λ2, ..., λn]Q−1. From
Corollary 1, we know that we can find an orthonormal set of v1,v2, ...,vn. By Lemma 2, it follows
that Q is an orthogonal matrix.

Example 4. Consider once again the matrix A in Example 2. In Example 3, we have obtained an
orthogonal set of eigenvectors:  −1

1
0

 ,
 1

1
2

 ,
 −1
−1
1
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By scaling, we obtain the following orthonormal set of eigenvectors: −1/
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Recall that these eigenvectors correspond to eigenvalues 1, 1, and−2, respectively. We thus produce:

Q =
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√

2 1/
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such that A = Q diag [1, 1,−2]Q−1.
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