Lecture Notes: Solutions of a Linear System

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

We can now utilize the materials we have learned to strengthen our understanding about linear systems. Recall that a linear system on n variables is a set of m equations:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\
& \ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

As before, introduce:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & & & \\
a_{n 1} & a_{n 2} & \ldots & a_{m n}
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right] \text {, and } \boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{m}
\end{array}\right]
$$

The linear system can be represented as:

$$
\begin{equation*}
\boldsymbol{A x}=\boldsymbol{b} . \tag{1}
\end{equation*}
$$

Henceforth, we will refer to \boldsymbol{A} as the coefficient matrix. The augmented matrix of \boldsymbol{A} is:

$$
\tilde{\boldsymbol{A}}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\ldots & & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{n}
\end{array}\right]
$$

Recall that if a linear system has at least one solution, we say that the system is consistent; otherwise, it is inconsistent. The next theorem characterizes the conditions for the system to be consistent.

Theorem 1 (Consistency Criterion). Linear system (1) has:

1. no solution if and only if rank $\boldsymbol{A}<\operatorname{rank} \tilde{\boldsymbol{A}}$;
2. exactly one solution if and only if rank $\boldsymbol{A}=\operatorname{rank} \tilde{\boldsymbol{A}}=n$;
3. infinitely many solutions if and only if rank $\boldsymbol{A}=\operatorname{rank} \tilde{\boldsymbol{A}}<n$.

Proof. The theorem follows directly from our earlier discussion on Gauss elimination and rank calculation.

Example 1. Consider the following linear system:

$$
\begin{aligned}
3 x_{2} & =4 \\
2 x_{1}+x_{2}+6 x_{3} & =3 \\
4 x_{1}+5 x_{2}+12 x_{3} & =10 .
\end{aligned}
$$

The coefficient matrix \boldsymbol{A} and the augmented matrix $\tilde{\boldsymbol{A}}$ are

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
0 & 3 & 0 \\
2 & 1 & 6 \\
4 & 5 & 12
\end{array}\right], \tilde{\boldsymbol{A}}=\left[\begin{array}{cccc}
0 & 3 & 0 & 4 \\
2 & 1 & 6 & 3 \\
4 & 5 & 12 & 10
\end{array}\right]
$$

which can be converted to the following matrices of row echelon form respectively:

$$
\begin{aligned}
\boldsymbol{A} & \Rightarrow\left[\begin{array}{lll}
2 & 1 & 6 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\tilde{\boldsymbol{A}} & \Rightarrow\left[\begin{array}{llll}
2 & 1 & 6 & 3 \\
0 & 3 & 0 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

We thus know that $\operatorname{rank} \boldsymbol{A}=\operatorname{rank} \tilde{\boldsymbol{A}}<3$. Hence, the system has infinitely many solutions.

Corollary 1. Suppose that \boldsymbol{A} is an $n \times n$ matrix, i.e., the linear system (1) has n equations on n variables. Then, the linear system has a unique solution if and only if $\operatorname{det}(\boldsymbol{A}) \neq 0$.

Proof. If Direction. From $\operatorname{det}(\boldsymbol{A}) \neq 0$ we know that $\operatorname{rank} \boldsymbol{A}=n$. This means that rank $\tilde{\boldsymbol{A}}$ must also be n because $\tilde{\boldsymbol{A}}$ has only n rows. Hence, Theorem 1 shows that (1) has a unique solution.

Only-If Direction. When (1) has a unique solution, by Theorem 1, we know that rank $\boldsymbol{A}=n$. $\overline{\text { Therefore, } \operatorname{det}(\boldsymbol{A})} \neq 0$.

We state the next result without proof:

Theorem 2 (Cramer's Rule). Consider the linear system in (1) with \boldsymbol{A} being an $n \times n$ matrix. When $\operatorname{det}(\boldsymbol{A}) \neq 0$, the system has a unique solution:

$$
\begin{aligned}
x_{1} & =\frac{\operatorname{det}\left(\boldsymbol{A}_{1}\right)}{\operatorname{det}(\boldsymbol{A})} \\
x_{2} & =\frac{\operatorname{det}\left(\boldsymbol{A}_{2}\right)}{\operatorname{det}(\boldsymbol{A})} \\
& \cdots \\
x_{n} & =\frac{\operatorname{det}\left(\boldsymbol{A}_{n}\right)}{\operatorname{det}(\boldsymbol{A})}
\end{aligned}
$$

where $\boldsymbol{A}_{i}(1 \leq i \leq n)$ is the matrix obtained by replacing the i-th column of \boldsymbol{A} with \boldsymbol{b}.

Example 2. Consider the system:

$$
\begin{aligned}
& 2 x_{1}+x_{2}=3 \\
& x_{1}+2 x_{2}=1
\end{aligned}
$$

The coefficient matrix equals

$$
\boldsymbol{A}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Since $\operatorname{det}(\boldsymbol{A}) \neq 0$, the system has a unique solution. Define:

$$
\boldsymbol{A}_{1}=\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right], \boldsymbol{A}_{2}=\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]
$$

Thus, by Theorem 2, we have:

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det}\left(\boldsymbol{A}_{1}\right)}{\operatorname{det}(\boldsymbol{A})}=\frac{5}{3} \\
& x_{2}=\frac{\operatorname{det}\left(\boldsymbol{A}_{2}\right)}{\operatorname{det}(\boldsymbol{A})}=\frac{-1}{3}
\end{aligned}
$$

