Lecture Notes: Solving Linear Systems with Gauss Elimination

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

1 Echelon Form and Elementary Row Operations

Let \boldsymbol{B} be an $m \times n$ matrix. We say that \boldsymbol{B} is in row echelon form if it satisfies all of the following conditions:

- If \boldsymbol{B} has rows consisting of only 0 's, such rows appear consecutively at the bottom of \boldsymbol{B}.
- For $i \in[1, m-1]$, the leftmost non-zero element of the i-th row is at a column that is strictly to the left of the column containing the leftmost non-zero element of the $(i+1)$-th row.

For example, matrices $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 1\end{array}\right],\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 0 & 1\end{array}\right]$, and $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 0 & 0\end{array}\right]$ are all in row echelon form, but $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 3 & 0 & 0 & 1\end{array}\right],\left[\begin{array}{llll}0 & 2 & 3 & 4 \\ 0 & 2 & 6 & 7 \\ 0 & 0 & 0 & 1\end{array}\right]$, and $\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 6 & 7\end{array}\right]$ are not.

We define three elementary row operations on \boldsymbol{B} :

1. Switch two rows of \boldsymbol{B}.
2. Multiply all numbers of a row by the same non-zero value.
3. Let \boldsymbol{r}_{i} and \boldsymbol{r}_{j} be two row vectors of \boldsymbol{B}. Update row \boldsymbol{r}_{i} to $\boldsymbol{r}_{i}+\boldsymbol{r}_{j}$.

Any matrix \boldsymbol{B} can be converted into a matrix in row echelon form by performing only elementary row operations. We demonstrate the steps using an example.

Example 1. We will convert the matrix below into row echelon form:

$$
\left[\begin{array}{llll}
0 & 3 & 0 & 4 \tag{1}\\
2 & 1 & 6 & 3 \\
1 & 0 & 5 & 1 \\
0 & 8 & 3 & 2
\end{array}\right]
$$

First, switch the rows so that the leftmost non-zero element of any row starts at a column that is the same as or to the left of the column containing the leftmost non-zero element of the next row. The following is a matrix satisfying the condition:

$$
\left[\begin{array}{llll}
2 & 1 & 6 & 3 \\
1 & 0 & 5 & 1 \\
0 & 3 & 0 & 4 \\
0 & 8 & 3 & 2
\end{array}\right]
$$

Let $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{4}$ be the 1st, $2 \mathrm{nd}, \ldots$, and 4 th rows, respectively. Our next goal is to convert the first element of $\boldsymbol{r}_{\mathbf{2}}, \boldsymbol{r}_{\mathbf{3}}$, and $\boldsymbol{r}_{\mathbf{4}}$ to 0 . Rows $\boldsymbol{r}_{\mathbf{3}}$ and $\boldsymbol{r}_{\mathbf{4}}$ already satisfy the condition. As for $\boldsymbol{r}_{\mathbf{2}}$, we can make it satisfy the condition by replacing it with $-\frac{1}{2} \boldsymbol{r}_{\boldsymbol{1}}+\boldsymbol{r}_{\boldsymbol{2}}$, which gives the following matrix:

$$
\left[\begin{array}{cccc}
2 & 1 & 6 & 3 \\
0 & -0.5 & 2 & -0.5 \\
0 & 3 & 0 & 4 \\
0 & 8 & 3 & 2
\end{array}\right]
$$

Henceforth, we will not touch the first row any more. Our next goal is to convert the second element of $\boldsymbol{r}_{\mathbf{3}}$ and $\boldsymbol{r}_{\mathbf{4}}$ to 0 . Regarding $\boldsymbol{r}_{\mathbf{3}}$, this can be achieved by replacing it with $6 \boldsymbol{r}_{\mathbf{2}}+\boldsymbol{r}_{\mathbf{3}}$, leading to:

$$
\left[\begin{array}{cccc}
2 & 1 & 6 & 3 \\
0 & -0.5 & 2 & -0.5 \\
0 & 0 & 12 & 1 \\
0 & 8 & 3 & 2
\end{array}\right]
$$

Similarly, replacing $\boldsymbol{r}_{\mathbf{4}}$ with $16 \boldsymbol{r}_{\mathbf{2}}+\boldsymbol{r}_{\mathbf{4}}$ gives:

$$
\left[\begin{array}{cccc}
2 & 1 & 6 & 3 \\
0 & -0.5 & 2 & -0.5 \\
0 & 0 & 12 & 1 \\
0 & 0 & 35 & -6
\end{array}\right]
$$

Henceforth, we will not touch the first two rows any more. Our next goal is to convert the third element of $\boldsymbol{r}_{\mathbf{4}}$ to 0 , as can be achieved by replacing it with $-\frac{35}{12} \boldsymbol{r}_{\mathbf{3}}+\boldsymbol{r}_{\mathbf{4}}$, giving:

$$
\left[\begin{array}{cccc}
2 & 1 & 6 & 3 \tag{2}\\
0 & -0.5 & 2 & -0.5 \\
0 & 0 & 12 & 1 \\
0 & 0 & 0 & -107 / 12
\end{array}\right]
$$

The matrix is now in row echelon form.

2 Matrix Form of Linear Equations

Consider that we have a system of line equations (such as a system is called a linear system):

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\
& \cdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =b_{m}
\end{aligned}
$$

Note that the system has m equations about n variables $x_{1}, . ., x_{n}$. If we introduce:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & & & \\
a_{n 1} & a_{n 2} & \ldots & a_{m n}
\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right] \text {, and } \boldsymbol{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{m}
\end{array}\right]
$$

then we can concisely represent the linear system with matrix multiplication:

$$
\boldsymbol{A x}=\boldsymbol{b} .
$$

If $\boldsymbol{b}=\mathbf{0}$, we say that the system is homogeneous system; otherwise, it is nonhomogeneous system. If the system has at least one solution, we say that the system is consistent; otherwise, it is inconsistent.

We define the augmented matrix of \boldsymbol{A}, denoted as $\tilde{\boldsymbol{A}}$, by including \boldsymbol{b} into A as the last column, namely:

$$
\tilde{\boldsymbol{A}}=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\ldots & & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{n}
\end{array}\right]
$$

Note that the vertical bar between the last two columns is just a reminder that this is an augmented matrix; the bar can be omitted if as desired. It is obvious that a linear system uniquely corresponds to an augmented matrix, and vice versa.

Example 2. Consider the following linear system:

$$
\begin{aligned}
& x_{1}+2 x_{2}+3 x_{3}=4 \\
& 2 x_{1}-x_{2}-2 x_{3}=2
\end{aligned}
$$

The corresponding augmented matrix is:

$$
\tilde{\boldsymbol{A}}=\left[\begin{array}{ccc|c}
1 & 2 & 3 & 4 \\
2 & -1 & -2 & 2
\end{array}\right]
$$

3 Gauss Elimination

Suppose that we are given a linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$. Let $\tilde{\boldsymbol{A}}$ be the augmented matrix of \boldsymbol{A}. Consider that we perform elementary row operations to convert $\tilde{\boldsymbol{A}}$ into another matrix $\tilde{\boldsymbol{A}}^{\prime}$. The linear system corresponding to $\tilde{\boldsymbol{A}}^{\prime}$ has exactly the same solutions as the linear system corresponding to $\tilde{\boldsymbol{A}}$. In other words, elementary row operations do not change the solutions of a linear system. We say that $\tilde{\boldsymbol{A}}$ and $\tilde{\boldsymbol{A}}^{\prime}$ are row equivalent.

Example 3. Consider the augmented matrix $\tilde{\boldsymbol{A}}$ shown in Example 2. All the following matrices are row equivalent to $\tilde{\boldsymbol{A}}$ (think: which elementary row operations were used to derive them?):

$$
\left[\begin{array}{ccc|c}
2 & -1 & -2 & 2 \\
1 & 2 & 3 & 4
\end{array}\right],\left[\begin{array}{ccc|c}
2 & -1 & -2 & 2 \\
2 & 4 & 6 & 8
\end{array}\right],\left[\begin{array}{ccc|c}
2 & -1 & -2 & 2 \\
4 & 3 & 4 & 10
\end{array}\right]
$$

Note that the last matrix corresponds to the following linear system:

$$
\begin{aligned}
2 x_{1}-x_{2}-2 x_{3} & =2 \\
4 x_{1}+3 x_{2}+4 x_{3} & =10
\end{aligned}
$$

Verify that this system has the same solutions as the system in Example 2.

Motivated by the above observation, we can solve the linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ by converting it to another linear system $\boldsymbol{A}^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$ whose augmented matrix is in row echelon form, as demonstrated in the next few examples.

Example 4. Consider the following linear system:

$$
\begin{aligned}
3 x_{2} & =4 \\
2 x_{1}+x_{2}+6 x_{3} & =3 \\
x_{1}+5 x_{3} & =1 \\
8 x_{2}+3 x_{3} & =2 .
\end{aligned}
$$

Solution. The augmented matrix of the linear system is matrix (1), which can be converted to the (row-equivalent) matrix in (2) of row echelon form, as shown in Example 1. (2) is the augmented matrix of the following linear system:

$$
\begin{aligned}
2 x_{1}+x_{2}+6 x_{3} & =3 \\
(-0.5) x_{2}+2 x_{3} & =-0.5 \\
12 x_{3} & =1 \\
0 & =-107 / 12
\end{aligned}
$$

The system clearly has no solution.
Example 5. Consider the following linear system:

$$
\begin{aligned}
3 x_{2} & =4 \\
2 x_{1}+x_{2}+6 x_{3} & =3 \\
x_{1}+5 x_{3} & =1 .
\end{aligned}
$$

Solution. The augmented matrix of the linear system is

$$
\left[\begin{array}{llll}
0 & 3 & 0 & 4 \\
2 & 1 & 6 & 3 \\
1 & 0 & 5 & 1
\end{array}\right]
$$

which can be converted to the following matrix of row echelon form

$$
\left[\begin{array}{cccc}
2 & 1 & 6 & 3 \\
0 & -0.5 & 2 & -0.5 \\
0 & 0 & 12 & 1
\end{array}\right]
$$

This matrix is the augmented matrix of the following linear system:

$$
\begin{align*}
2 x_{1}+x_{2}+6 x_{3} & =3 \tag{3}\\
(-0.5) x_{2}+2 x_{3} & =-0.5 \tag{4}\\
12 x_{3} & =1 . \tag{5}
\end{align*}
$$

Now we can do back substitution to obtain a unique solution. First, (5) gives $x_{3}=1 / 12$. Then, substituting this into (4), we get $x_{2}=4 / 3$. Finally, substituting the values of x_{2} and x_{3} into (3), we get $x_{1}=7 / 12$.

Example 6. Consider the following linear system:

$$
\begin{aligned}
3 x_{2} & =4 \\
2 x_{1}+x_{2}+6 x_{3} & =3 \\
4 x_{1}+5 x_{2}+12 x_{3} & =10
\end{aligned}
$$

Solution. The augmented matrix of the linear system is

$$
\left[\begin{array}{cccc}
0 & 3 & 0 & 4 \\
2 & 1 & 6 & 3 \\
4 & 5 & 12 & 10
\end{array}\right]
$$

which can be converted to the following matrix of row echelon form

$$
\left[\begin{array}{llll}
2 & 1 & 6 & 3 \\
0 & 3 & 0 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This matrix is the augmented matrix of the following linear system:

$$
\begin{array}{r}
2 x_{1}+x_{2}+6 x_{3}=3 \\
3 x_{2}=4
\end{array}
$$

The system has infinitely many solutions.
The above method is called Gauss elimination. From the earlier examples, we can see that a linear system may have

- no solution-in this case, we say that the system is over-determined;
- a unique solution-in this case, we say that the system is determined;
- infinitely many solutions-in this case, we say that the system is under-determined.

