Lecture Notes: Determinant of a Square Matrix

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

1 Determinant Definition

Let $\boldsymbol{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix (i.e., \boldsymbol{A} is a square matrix). Given a pair of (i, j), we define $\boldsymbol{A}_{i j}$ to be the $(n-1) \times(n-1)$ matrix obtained by removing the i-th row and j-th column of \boldsymbol{A}. For example, suppose that

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & -2 \\
-1 & -1 & 2
\end{array}\right]
$$

Then:

$$
\boldsymbol{A}_{21}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right], \boldsymbol{A}_{22}=\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right], \boldsymbol{A}_{32}=\left[\begin{array}{cc}
1 & 1 \\
3 & -2
\end{array}\right]
$$

We are now ready to define determinants:
Definition 1. Let $\boldsymbol{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix. If $n=1$, its determinant, denoted as $\operatorname{det}(\boldsymbol{A})$, equals a_{11}. If $n>1$, we first choose an arbitrary $i^{*} \in[1, n]$, and then define the determinant of \boldsymbol{A} recursively as:

$$
\begin{equation*}
\operatorname{det}(\boldsymbol{A})=\sum_{j=1}^{n}(-1)^{i^{*}+j} \cdot a_{i^{*} j} \cdot \operatorname{det}\left(\boldsymbol{A}_{i^{*} j}\right) . \tag{1}
\end{equation*}
$$

Besides $\operatorname{det}(\boldsymbol{A})$, we may also denote the determinant of \boldsymbol{A} as $|\boldsymbol{A}|$. Henceforth, if we apply (1) to compute $\operatorname{det}(\boldsymbol{A})$, we say that we expand \boldsymbol{A} by row i^{*}. It is important to note that the value of $\operatorname{det}(\boldsymbol{A})$ does not depend on the choice of i^{*}. We omit the proof of this fact, but illustrate it in the following examples.

Example 1 (Second-Order Determinants). In general, if $\boldsymbol{A}=\left[a_{i j}\right]$ is a 2×2 matrix, then

$$
\operatorname{det}(\boldsymbol{A})=a_{11} a_{22}-a_{12} a_{21} .
$$

For instance:

$$
\left|\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right|=2 \times 2-1 \times(-1)=5 \text {. }
$$

We may verify the above by definition as follows. Choosing $i^{*}=1$, we get:

$$
\begin{aligned}
\left|\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right| & =(-1)^{1+1} \cdot 2 \cdot \operatorname{det}\left(\boldsymbol{A}_{11}\right)+(-1)^{1+2} \cdot 1 \cdot \operatorname{det}\left(\boldsymbol{A}_{12}\right) \\
& =2 \times 2+(-1) \times(-1)=5
\end{aligned}
$$

Alternatively, choosing $i^{*}=2$, we get:

$$
\begin{aligned}
\left|\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right| & =(-1)^{2+1} \cdot(-1) \cdot \operatorname{det}\left(\boldsymbol{A}_{21}\right)+(-1)^{2+2} \cdot 2 \cdot \operatorname{det}\left(\boldsymbol{A}_{22}\right) \\
& =1 \times 1+2 \times 2=5
\end{aligned}
$$

Example 2 (Third-Order Determinants). Suppose that

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & -2 \\
-1 & -1 & 2
\end{array}\right]
$$

Choosing $i^{*}=1$, we get:

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}) & =1\left|\begin{array}{cc}
0 & -2 \\
-1 & 2
\end{array}\right|-2\left|\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right|+1\left|\begin{array}{cc}
3 & 0 \\
-1 & -1
\end{array}\right| \\
& =1(0-2)-2(6-2)+1(-3-0)=-13 .
\end{aligned}
$$

Alternatively, choosing $i^{*}=2$, we get:

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}) & =-3\left|\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right|+0\left|\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right|-(-2)\left|\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right| \\
& =(-3)(4+1)+0(2+1)+2(-1+2)=-13 .
\end{aligned}
$$

2 Properties of Determinants

Expansion by a Column. Definition 1 allows us to compute the determinant of a matrix by row expansion. We may also achieve the same purpose by column expansion.

Lemma 1. Let $\boldsymbol{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix with $n>1$. Choose an arbitrary $j^{*} \in[1, n]$. The determinant of \boldsymbol{A} equals:

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i=1}^{n}(-1)^{i+j^{*}} \cdot a_{i j^{*}} \cdot \operatorname{det}\left(\boldsymbol{A}_{i j^{*}}\right) .
$$

The value of the above equation does not depend on the choice of j^{*}.

We omit the proof but illustrate the lemma with an example below. Henceforth, if we compute $\operatorname{det}(\boldsymbol{A})$ by the above lemma, we say that we expand \boldsymbol{A} by column j^{*}.

Example 3. Suppose that

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & -2 \\
-1 & -1 & 2
\end{array}\right]
$$

Choosing $j^{*}=1$, we get:

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}) & =1\left|\begin{array}{cc}
0 & -2 \\
-1 & 2
\end{array}\right|-3\left|\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right|+(-1)\left|\begin{array}{cc}
2 & 1 \\
0 & -2
\end{array}\right| \\
& =1(0-2)-3(4+1)-1(-4-0)=-13 .
\end{aligned}
$$

Corollary 1. Let \boldsymbol{A} be a square matrix. Then, $\operatorname{det}(\boldsymbol{A})=\operatorname{det}\left(\boldsymbol{A}^{T}\right)$.
Proof. Note that expanding \boldsymbol{A} by column k is equivalent to expanding \boldsymbol{A}^{T} by row k.

Corollary 2. If \boldsymbol{A} has a zero row or a zero column, then $\operatorname{det}(\boldsymbol{A})=0$.
Proof. If \boldsymbol{A} has a zero row, then $\operatorname{det}(\boldsymbol{A})=0$ follows from expanding \boldsymbol{A} by that row. The case where \boldsymbol{A} has a zero column is similar.

Determinant of a Row-Echelon Matrix. The next lemma shows that the determinant of a matrix in row-echelon form is simply the product of the values on the main diagonal.

Lemma 2. Let $\boldsymbol{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix in row-echelon form. Then, $\operatorname{det}(\boldsymbol{A})=\Pi_{i=1}^{n} a_{i i}$.
Proof. We can prove the lemma by induction. First, correctness is obvious for $n=1$. Assuming correctness for $n \leq t-1$ (for $t \geq 2$), consider $n=t$. Expanding \boldsymbol{A} by the first row gives:

$$
\begin{equation*}
\operatorname{det}(\boldsymbol{A})=\sum_{j=1}^{n}(-1)^{1+j} \cdot a_{1 j} \cdot \operatorname{det}\left(\boldsymbol{A}_{1 j}\right) . \tag{2}
\end{equation*}
$$

From induction we know that $\operatorname{det}\left(\boldsymbol{A}_{11}\right)=\prod_{i=2}^{n} a_{i i}$. Furthermore, for $j>1$, $\operatorname{det}\left(\boldsymbol{A}_{1 j}\right)=0$ because the first column of $\boldsymbol{A}_{1 j}$ contains all 0 's. It thus follows that (2) equals $\Pi_{i=1}^{n} a_{i i}$.

Determinants under Elementary Row Operations. Let $\boldsymbol{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix. Recalled that the elementary row operations on \boldsymbol{A} are:

1. Switch two rows of \boldsymbol{A}.
2. Multiply all numbers of a row of \boldsymbol{A} by the same non-zero value c.
3. Let \boldsymbol{r}_{i} and \boldsymbol{r}_{j} be two distinct row vectors of \boldsymbol{A}. Update row \boldsymbol{r}_{i} to $\boldsymbol{r}_{i}+\boldsymbol{r}_{j}$.

Next, we refer to the above as Operation 1, 2, and 3, respectively.

Lemma 3. The determinant of \boldsymbol{A}

1. should be multiplied by -1 after Operation 1;
2. should be multiplied by c after Operation 2;
3. has no change after Operation 3.

Proof. See appendix.
The following corollary will be very useful:

Corollary 3. Let \boldsymbol{r}_{i} and \boldsymbol{r}_{j} be two distinct row vectors of \boldsymbol{A}. The determinant of \boldsymbol{A} does not change after the following operation:

- Update row \boldsymbol{r}_{i} to $\boldsymbol{r}_{i}+c \cdot \boldsymbol{r}_{j}$, where c is a real value.

Proof. We consider only $c \neq 0$ (the case of $c=0$ is trivial). Let \boldsymbol{A}^{\prime} be the array after applying the above operation. We can also obtain \boldsymbol{A}^{\prime} by performing the next three operations:

1. Multiply the j-th row of \boldsymbol{A} by c. Let $\boldsymbol{A}_{\mathbf{1}}$ be the array obtained.
2. Add the j-th row of $\boldsymbol{A}_{\mathbf{1}}$ into its i-th row. Let $\boldsymbol{A}_{\mathbf{2}}$ be the array obtained.
3. Multiply the j-th row of $\boldsymbol{A}_{\mathbf{2}}$ by $1 / c$. Let $\boldsymbol{A}_{\boldsymbol{3}}$ be the array obtained. Note that $\boldsymbol{A}_{\boldsymbol{3}}=\boldsymbol{A}^{\prime}$.

By Lemma $3, \operatorname{det}\left(\boldsymbol{A}_{\mathbf{1}}\right)=c \cdot \operatorname{det}(\boldsymbol{A}), \operatorname{det}\left(\boldsymbol{A}_{\mathbf{2}}\right)=\operatorname{det}\left(\boldsymbol{A}_{\mathbf{1}}\right)$, and $\operatorname{det}\left(\boldsymbol{A}_{\mathbf{3}}\right)=(1 / c) \cdot \operatorname{det}\left(\boldsymbol{A}_{\mathbf{3}}\right)$. Hence, $\operatorname{det}(\boldsymbol{A})=\operatorname{det}\left(\boldsymbol{A}^{\prime}\right)$.

Let us illustrate Lemma 3 and Corollary 3 with an example.

Example 4.

$$
\left|\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & -2 \\
-1 & -1 & 2
\end{array}\right|=\left|\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & -2 \\
0 & 1 & 3
\end{array}\right|=\left|\begin{array}{ccc}
1 & 2 & 1 \\
0 & -6 & -5 \\
0 & 1 & 3
\end{array}\right|=\left|\begin{array}{ccc}
1 & 2 & 1 \\
0 & -6 & -5 \\
0 & 0 & 13 / 6
\end{array}\right|=-13 .
$$

Here is another derivation giving the same result:

$$
\left|\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & -2 \\
-1 & -1 & 2
\end{array}\right|=-\left|\begin{array}{ccc}
1 & 2 & 1 \\
-1 & -1 & 2 \\
3 & 0 & -2
\end{array}\right|=-\left|\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & -6 & -5
\end{array}\right|=-\left|\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & 0 & 13
\end{array}\right|=-13 .
$$

Corollary 4. If \boldsymbol{A} has two identical rows or columns, then $\operatorname{det}(\boldsymbol{A})=0$.
Proof. We prove only the row case. Switching the two rows gets back the same matrix. However, by Lemma 3, the determinant of the matrix should be multiplied by -1 . Therefore, we get $\operatorname{det}(\boldsymbol{A})=$ $-\operatorname{det}(\boldsymbol{A})$, meaning $\operatorname{det}(\boldsymbol{A})=0$.

Determinant under Matrix Multiplication. The following is a perhaps surprising property of determinants:

Lemma 4. Let $\boldsymbol{A}, \boldsymbol{B}$ be $n \times n$ matrices. It holds that $\operatorname{det}(\boldsymbol{A B})=\operatorname{det}(\boldsymbol{A}) \cdot \operatorname{det}(\boldsymbol{B})$.

The proof is not required, but we will discuss it in a tutorial after we have learned the concept of "matrix inversion".

Example 5.

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & -2 \\
-1 & -1 & 2
\end{array}\right| & =-13 \\
\left|\begin{array}{ccc}
-2 & 1 & 0 \\
0 & 1 & 1 \\
1 & -2 & 0
\end{array}\right| & =-3 \\
\left|\left[\begin{array}{ccc}
1 & 2 & 1 \\
3 & 0 & -2 \\
-1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & 1 & 1 \\
1 & -2 & 0
\end{array}\right]\right| & =\left|\begin{array}{ccc}
-1 & 1 & 2 \\
-8 & 7 & 0 \\
4 & -6 & -1
\end{array}\right|=39 .
\end{aligned}
$$

Relationships with Ranks. The lemma below relates determinants to ranks:

Lemma 5. Let \boldsymbol{A} be an $n \times n$ matrix. \boldsymbol{A} has rank n if and only if $\operatorname{det}(\boldsymbol{A}) \neq 0$.
Proof. We can first apply elementary row operations to convert \boldsymbol{A} into row-echelon form \boldsymbol{A}^{*}. Thus, \boldsymbol{A} has rank n if and only if \boldsymbol{A}^{*} has rank n. Since \boldsymbol{A}^{*} is a square matrix, that it has rank n is equivalent to saying that all the numbers on its main diagonal are non-zero. Thus, by Lemma 2, we know that \boldsymbol{A}^{*} has rank n if and only if $\operatorname{det}\left(\boldsymbol{A}^{*}\right) \neq 0$. Finally, by Lemma $3, \operatorname{det}(\boldsymbol{A}) \neq 0$ if and only if $\operatorname{det}\left(\boldsymbol{A}^{*}\right) \neq 0$. We thus complete the proof.

Appendix: Proof of Lemma 3

The claims on Operations 1 and 2 are easy to prove; we leave the proofs to you as exercises.
To prove the claim on Operation 3, we will leverage Corollary 4 (which holds as long as the claim on Operation 1 is true).

Suppose that, after performing Operation 3 on \boldsymbol{A}, we obtain a matrix \boldsymbol{A}^{\prime}. Our goal is to show that $\operatorname{det}(\boldsymbol{A})=\operatorname{det}\left(\boldsymbol{A}^{\prime}\right)$. Let us define a new matrix \boldsymbol{B} :

- B is the same as \boldsymbol{A}, except that the i-th row of \boldsymbol{B} is replaced by the j-th row of \boldsymbol{A}.

In other words, the i-th row of \boldsymbol{B} is identical to the j-th row of \boldsymbol{B}. Corollary 4 tells us that $\operatorname{det}(\boldsymbol{B})=0$. Next, we will focus on showing:

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{A}^{\prime}\right)=\operatorname{det}(\boldsymbol{A})+\operatorname{det}(\boldsymbol{B}) \tag{3}
\end{equation*}
$$

which will indicate $\operatorname{det}(\boldsymbol{A})=\operatorname{det}\left(\boldsymbol{A}^{\prime}\right)$ and hence will complete the proof.
Define $a_{i k}^{\prime}$ as the number at the i-th row and j-th column of \boldsymbol{A}^{\prime}, and define $a_{i k}, b_{i k}$ similarly with respect to $\boldsymbol{A}, \boldsymbol{B}$, respectively. Note that:

$$
a_{i k}^{\prime}=a_{i k}+b_{i k}
$$

holds by the way \boldsymbol{A}^{\prime} and \boldsymbol{B} were obtained.
In fact, (3) follows almost directly from the definition of determinants. Let us calculate $\operatorname{det}\left(\boldsymbol{A}^{\boldsymbol{\prime}}\right)$ by expanding the matrix on row i :

$$
\begin{aligned}
\operatorname{det}\left(\boldsymbol{A}^{\prime}\right) & =\sum_{k=1}^{n}(-1)^{i+k} a_{i k}^{\prime} \cdot \operatorname{det}\left(\boldsymbol{A}_{i k}^{\prime}\right) \\
& =\sum_{k=1}^{n}(-1)^{i+k}\left(a_{i k}+b_{i k}\right) \cdot \operatorname{det}\left(\boldsymbol{A}^{\prime}{ }_{i k}\right) \\
& =\left(\sum_{k=1}^{n}(-1)^{i+k} a_{i k} \cdot \operatorname{det}\left(\boldsymbol{A}^{\prime}{ }_{i k}\right)\right)+\left(\sum_{k=1}^{n}(-1)^{i+k} b_{i k} \cdot \operatorname{det}\left(\boldsymbol{A}^{\prime}{ }_{i k}\right)\right) \\
& =\left(\sum_{k=1}^{n}(-1)^{i+k} a_{i k} \cdot \operatorname{det}\left(\boldsymbol{A}_{i k}\right)\right)+\left(\sum_{k=1}^{n}(-1)^{i+k} b_{i k} \cdot \operatorname{det}\left(\boldsymbol{B}_{i k}\right)\right) \\
& =\operatorname{det}(\boldsymbol{A})+\operatorname{det}(\boldsymbol{B}) .
\end{aligned}
$$

