Lecture Notes: Matrix Definitions and Operations

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

1 Matrix Definitions

An $m \times n$ matrix is defined as m rows of real numbers, where each row has length n. To represent a matrix, we typically write out all these numbers in a 2d array, enclosed by a pair of square brackets, e.g.:

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \\ 8 & 4 & 2 \end{bmatrix}$$
(1)

is a 4×3 matrix. We will use capitalized bold symbols to denote arrays, e.g., A. The values m and n are called the *dimensions* of A.

When the dimensions m, n are clear, we sometimes use the notation $\mathbf{A} = [a_{ij}]$ to define a_{ij} , which refers to the number at the *i*-th row and *j*-th column of \mathbf{A} , with $i \in [1, m]$ and $j \in [1, n]$. For example, if A is the array in (1), then $a_{12} = 2$ whereas $a_{21} = 3$.

A vector is a matrix that has only one row or one column, namely, either m = 1 or n = 1. More specifically, a $1 \times n$ matrix is a row vector, while an $m \times 1$ matrix is a column vector. For example, let \boldsymbol{A} be the matrix in (1). Then, the 3rd row of \boldsymbol{A} is a row vector [6,7,8], while the 2nd column is a column vector:

$$\left[\begin{array}{c}2\\4\\7\\4\end{array}\right].$$

If m = n, A is a square matrix, e.g.

$$\begin{bmatrix} 1 & 2 & 3 & 8 \\ 3 & 4 & 5 & 2 \\ 6 & 7 & 8 & 3 \\ 8 & 4 & 2 & 4 \end{bmatrix}.$$
 (2)

When $\mathbf{A} = [a_{ij}]$ is an $n \times n$ square matrix, we refer to the sequence $a_{11}, a_{22}, ..., a_{nn}$ as the main diagonal (or just diagonal for short). For example, if \mathbf{A} is the matrix in (2), then its main diagonal is the sequence 1, 4, 8, 4.

Again, let $\mathbf{A} = [a_{ij}]$ be a square matrix. Then, we say that

- **A** is symmetric if it always holds that $a_{ij} = a_{ji}$;
- A is skew-symmetric if it always holds that $a_{ij} = -a_{ji}$.

It is easy to see that A is skew-symmetric, then its main diagonal consists of only 0's. For example,

$$\begin{bmatrix} 1 & 2 & 3 & 8 \\ 2 & 4 & 5 & 2 \\ 3 & 5 & 8 & 3 \\ 8 & 2 & 3 & 4 \end{bmatrix}$$

is symmetric, while

$$\begin{bmatrix} 0 & 2 & -3 & -8 \\ -2 & 0 & 5 & 2 \\ 3 & -5 & 0 & 3 \\ 8 & -2 & -3 & 0 \end{bmatrix}$$

is skew-symmetric.

Still let A be a square matrix. We say that A is a *diagonal matrix* if it has non-zero values only at its main diagonal. If in addition all those non-zero values are 1, then we say that A is an *identity matrix*, e.g.:

$$\left[\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

Finally, if all the values in an $m \times n$ matrix A are 0, then we say that A as a zero matrix. We may denote the matrix as **0** if its dimensions are clear from the context.

2 Matrix Operations

Definition 1. Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $m \times n$ matrices. Then, we say that A equals B if $a_{ij} = b_{ij}$ for all $i \in [1, n]$ and $j \in [1, m]$.

If **A** and **B** are equal, then we write A = B; otherwise, we write $A \neq B$.

Definition 2. Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $m \times n$ matrices. We define:

- (matrix addition) the result of A + B to be the $m \times n$ matrix $C = [c_{ij}]$ where $c_{ij} = a_{ij} + b_{ij}$ for all $i \in [1, n]$ and $j \in [1, m]$;
- (matrix subtraction) the result of A-B to be the $m \times n$ matrix $C = [c_{ij}]$ where $c_{ij} = a_{ij}-b_{ij}$ for all $i \in [1, n]$ and $j \in [1, m]$.

For example:

$\left[\begin{array}{c}1\\3\\6\\8\end{array}\right]$	$2 \\ 4 \\ 7 \\ 4$	$\begin{array}{c}3\\5\\8\\2\end{array}$	+	$\left[\begin{array}{c}0\\2\\0\\0\end{array}\right]$	$ \begin{array}{r} 1 \\ -3 \\ -7 \\ -2 \end{array} $	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix}$	=	$\left[\begin{array}{c}1\\5\\6\\8\end{array}\right]$	${3 \\ 1 \\ 0 \\ 2 }$	$\begin{bmatrix} 3 \\ 6 \\ 8 \\ 4 \end{bmatrix}$
$\begin{bmatrix} 1\\ 3\\ 6\\ 8 \end{bmatrix}$	$2 \\ 4 \\ 7 \\ 4$	$\begin{array}{c}3\\5\\8\\2\end{array}$	_	$\left[\begin{array}{c}0\\2\\0\\0\end{array}\right]$	$1 \\ -3 \\ -7 \\ -2$	$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix}$	=	$\left[\begin{array}{c}1\\1\\6\\8\end{array}\right]$	$\begin{array}{c}1\\7\\14\\6\end{array}$	$\begin{array}{c}3\\4\\8\\0\end{array}$

Definition 3. (Matrix Scalar Multiplication) Let $\mathbf{A} = [a_{ij}]$ be an $m \times n$ matrices, and c be a real value. Then, we define $c\mathbf{A}$ to be the $m \times n$ matrix $\mathbf{B} = [b_{ij}]$ where $b_{ij} = c \cdot a_{ij}$ for all $i \in [1, n]$ and $j \in [1, m]$.

For example:

2	[1	2	3] [2	4	6
	3	4	5		6	8	10
	6	7	8	=	12	14	16
	8	4	2		16	8	4

Definition 4. (Matrix Multiplication) Let $A = [a_{ij}]$ be an $m \times n$ matrix, and $B = [b_{ij}]$ be an $n \times p$ matrix. We define AB as the $m \times p$ matrix $C = [c_{ij}]$ where

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

for all $i \in [1, m]$ and $j \in [1, p]$.

Note that matrix multiplication requires that the number of *columns* of the first matrix must equal the number of *rows* of the second matrix. For example:

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 3 & 4 & 2 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & -2 & 0 \end{bmatrix} = \begin{bmatrix} -5 & 4 & 7 \\ -5 & 8 & 12 \\ -1 & -1 & 2 \end{bmatrix}$$

It is rudimentary to verify:

$$egin{array}{rcl} ABC&=&A(BC)\ (A+B)C&=&AC+BC\ C(A+B)&=&CA+CB \end{array}$$

Note that, in general, matrix multiplication does *not* necessarily obey commutativity. In fact, AB does not always guarantee that BA is well defined (recall the dimension requirement in Definition 4).

Definition 5. (Matrix Transposition) Let $\mathbf{A} = [a_{ij}]$ be an $m \times n$ matrix. Then, the **transpose** of \mathbf{A} , denoted as \mathbf{A}^T , is the $n \times m$ matrix $B = [b_{ij}]$ where $a_{ij} = b_{ji}$ for all $i \in [1, n]$ and $j \in [1, m]$.

For example:

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \\ 8 & 4 & 2 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 3 & 6 & 8 \\ 2 & 4 & 7 & 4 \\ 3 & 5 & 8 & 2 \end{bmatrix}$$

It is rudimentary to verify:

$$(\mathbf{A}^T)^T = \mathbf{A}$$
$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$
$$(c\mathbf{A})^T = c\mathbf{A}^T$$
$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T\mathbf{A}^T$$