Lecture Notes: Matrix Definitions and Operations

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

1 Matrix Definitions

An $m \times n$ matrix is defined as m rows of real numbers, where each row has length n. To represent a matrix, we typically write out all these numbers in a 2 d array, enclosed by a pair of square brackets, e.g.:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \tag{1}\\
3 & 4 & 5 \\
6 & 7 & 8 \\
8 & 4 & 2
\end{array}\right]
$$

is a 4×3 matrix. We will use capitalized bold symbols to denote arrays, e.g., \boldsymbol{A}. The values m and n are called the dimensions of \boldsymbol{A}.

When the dimensions m, n are clear, we sometimes use the notation $\boldsymbol{A}=\left[a_{i j}\right]$ to define $a_{i j}$, which refers to the number at the i-th row and j-th column of \boldsymbol{A}, with $i \in[1, m]$ and $j \in[1, n]$. For example, if A is the array in (1), then $a_{12}=2$ whereas $a_{21}=3$.

A vector is a matrix that has only one row or one column, namely, either $m=1$ or $n=1$. More specifically, a $1 \times n$ matrix is a row vector, while an $m \times 1$ matrix is a column vector. For example, let \boldsymbol{A} be the matrix in (1). Then, the 3 rd row of \boldsymbol{A} is a row vector $[6,7,8]$, while the 2 nd column is a column vector:

$$
\left[\begin{array}{l}
2 \\
4 \\
7 \\
4
\end{array}\right]
$$

If $m=n, \boldsymbol{A}$ is a square matrix, e.g.

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 8 \tag{2}\\
3 & 4 & 5 & 2 \\
6 & 7 & 8 & 3 \\
8 & 4 & 2 & 4
\end{array}\right]
$$

When $\boldsymbol{A}=\left[a_{i j}\right]$ is an $n \times n$ square matrix, we refer to the sequence $a_{11}, a_{22}, \ldots, a_{n n}$ as the main diagonal (or just diagonal for short). For example, if \boldsymbol{A} is the matrix in (2), then its main diagonal is the sequence $1,4,8,4$.

Again, let $\boldsymbol{A}=\left[a_{i j}\right]$ be a square matrix. Then, we say that

- \boldsymbol{A} is symmetric if it always holds that $a_{i j}=a_{j i}$;
- \boldsymbol{A} is skew-symmetric if it always holds that $a_{i j}=-a_{j i}$.

It is easy to see that \boldsymbol{A} is skew-symmetric, then its main diagonal consists of only 0 's. For example,

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 8 \\
2 & 4 & 5 & 2 \\
3 & 5 & 8 & 3 \\
8 & 2 & 3 & 4
\end{array}\right]
$$

is symmetric, while

$$
\left[\begin{array}{cccc}
0 & 2 & -3 & -8 \\
-2 & 0 & 5 & 2 \\
3 & -5 & 0 & 3 \\
8 & -2 & -3 & 0
\end{array}\right]
$$

is skew-symmetric.
Still let \boldsymbol{A} be a square matrix. We say that \boldsymbol{A} is a diagonal matrix if it has non-zero values only at its main diagonal. If in addition all those non-zero values are 1 , then we say that \boldsymbol{A} is an identity matrix, e.g.:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Finally, if all the values in an $m \times n$ matrix \boldsymbol{A} are 0 , then we say that \boldsymbol{A} as a zero matrix. We may denote the matrix as $\mathbf{0}$ if its dimensions are clear from the context.

2 Matrix Operations

Definition 1. Let $\boldsymbol{A}=\left[a_{i j}\right]$ and $\boldsymbol{B}=\left[b_{i j}\right]$ be $m \times n$ matrices. Then, we say that \boldsymbol{A} equals \boldsymbol{B} if $a_{i j}=b_{i j}$ for all $i \in[1, n]$ and $j \in[1, m]$.

If \boldsymbol{A} and \boldsymbol{B} are equal, then we write $\boldsymbol{A}=\boldsymbol{B}$; otherwise, we write $\boldsymbol{A} \neq \boldsymbol{B}$.
Definition 2. Let $\boldsymbol{A}=\left[a_{i j}\right]$ and $\boldsymbol{B}=\left[b_{i j}\right]$ be $m \times n$ matrices. We define:

- (matrix addition) the result of $\boldsymbol{A}+\boldsymbol{B}$ to be the $m \times n$ matrix $\boldsymbol{C}=\left[c_{i j}\right]$ where $c_{i j}=a_{i j}+b_{i j}$ for all $i \in[1, n]$ and $j \in[1, m]$;
- (matrix subtraction) the result of $\boldsymbol{A}-\boldsymbol{B}$ to be the $m \times n$ matrix $\boldsymbol{C}=\left[c_{i j}\right]$ where $c_{i j}=a_{i j}-b_{i j}$ for all $i \in[1, n]$ and $j \in[1, m]$.

For example:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
8 & 4 & 2
\end{array}\right]+\left[\begin{array}{ccc}
0 & 1 & 0 \\
2 & -3 & 1 \\
0 & -7 & 0 \\
0 & -2 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 3 \\
5 & 1 & 6 \\
6 & 0 & 8 \\
8 & 2 & 4
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
8 & 4 & 2
\end{array}\right]-\left[\begin{array}{ccc}
0 & 1 & 0 \\
2 & -3 & 1 \\
0 & -7 & 0 \\
0 & -2 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & 7 & 4 \\
6 & 14 & 8 \\
8 & 6 & 0
\end{array}\right]}
\end{aligned}
$$

Definition 3. (Matrix Scalar Multiplication) Let $\boldsymbol{A}=\left[a_{i j}\right]$ be an $m \times n$ matrices, and c be a real value. Then, we define $c \boldsymbol{A}$ to be the $m \times n$ matrix $\boldsymbol{B}=\left[b_{i j}\right]$ where $b_{i j}=c \cdot a_{i j}$ for all $i \in[1, n]$ and $j \in[1, m]$.

For example:

$$
2\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
8 & 4 & 2
\end{array}\right]=\left[\begin{array}{ccc}
2 & 4 & 6 \\
6 & 8 & 10 \\
12 & 14 & 16 \\
16 & 8 & 4
\end{array}\right]
$$

Definition 4. (Matrix Multiplication) Let $\boldsymbol{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix, and $\boldsymbol{B}=\left[b_{i j}\right]$ be an $n \times p$ matrix. We define $\boldsymbol{A B}$ as the $m \times p$ matrix $\boldsymbol{C}=\left[c_{i j}\right]$ where

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

for all $i \in[1, m]$ and $j \in[1, p]$.
Note that matrix multiplication requires that the number of columns of the first matrix must equal the number of rows of the second matrix. For example:

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
3 & 4 & 2 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & 2 \\
-1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & -2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
-5 & 4 & 7 \\
-5 & 8 & 12 \\
-1 & -1 & 2
\end{array}\right]
$$

It is rudimentary to verify:

$$
\begin{aligned}
\boldsymbol{A B C} & =\boldsymbol{A}(\boldsymbol{B C}) \\
(\boldsymbol{A}+\boldsymbol{B}) \boldsymbol{C} & =\boldsymbol{A C}+\boldsymbol{B C} \\
\boldsymbol{C}(\boldsymbol{A}+\boldsymbol{B}) & =\boldsymbol{C A}+\boldsymbol{C B}
\end{aligned}
$$

Note that, in general, matrix multiplication does not necessarily obey commutativity. In fact, $\boldsymbol{A B}$ does not always guarantee that $\boldsymbol{B} \boldsymbol{A}$ is well defined (recall the dimension requirement in Definition 4).
Definition 5. (Matrix Transposition) Let $\boldsymbol{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix. Then, the transpose of \boldsymbol{A}, denoted as \boldsymbol{A}^{T}, is the $n \times m$ matrix $B=\left[b_{i j}\right]$ where $a_{i j}=b_{j i}$ for all $i \in[1, n]$ and $j \in[1, m]$.

For example:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
8 & 4 & 2
\end{array}\right]^{T}=\left[\begin{array}{llll}
1 & 3 & 6 & 8 \\
2 & 4 & 7 & 4 \\
3 & 5 & 8 & 2
\end{array}\right]
$$

It is rudimentary to verify:

$$
\begin{aligned}
\left(\boldsymbol{A}^{T}\right)^{T} & =\boldsymbol{A} \\
(\boldsymbol{A}+\boldsymbol{B})^{T} & =\boldsymbol{A}^{T}+\boldsymbol{B}^{T} \\
(c \boldsymbol{A})^{T} & =c \boldsymbol{A}^{T} \\
(\boldsymbol{A B})^{T} & =\boldsymbol{B}^{T} \boldsymbol{A}^{T}
\end{aligned}
$$

