Lecture Notes: Line Integrals by Coordinate and by Dot Product

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

Line integrals by arc length can be regarded as performing integration using a scalar function along a curve. Today we will discuss a different form of line integrals, which perform integration using a vector function along a curve. Next, we will take several steps - in Sections 1, 2, and 3, respectively - to define this form of integrals.

1 Line Integrals by One Coordinate

Let us first introduce a convention. Suppose that $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is a scalar function with realvalued parameters. Given a point $p=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ in \mathbb{R}^{d}, we use $f(p)$ as a short form for $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$.

Definition 1. Let C be a smooth curve in \mathbb{R}^{d} with a starting point and an ending point. Break C into a sequence of n curves $C_{1}, C_{2}, \ldots, C_{n}$ such that (i) C_{1} has the same starting point as C, (ii) for $j \in[1, n-1]$, the ending point of C_{j} is the starting point of C_{j+1}, and (iii) C_{n} has the same ending point as C. Define ℓ to be the maximum length of $C_{1}, C_{2}, \ldots, C_{n}$. For each $j \in[1, n]$:

- choose an arbitrary point p_{j} on C_{j}
- denote by $\Delta_{1}[j]=x_{1}^{\prime}[j]-x_{1}[j]$ where $x_{1}[j]$ and $x_{1}^{\prime}[j]$ are the x_{1}-coordinates of the starting and ending points of C_{j}, respectively.

For a scalar function $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$, if the following limit exists:

$$
\lim _{\ell \rightarrow 0} \sum_{j=1}^{n} f\left(p_{j}\right) \cdot \Delta_{1}[j]
$$

then we define

$$
\int_{C} f\left(x_{1}, \ldots, x_{d}\right) d x_{1}
$$

to be the above limit.
The figure below illustrates the curve partitioning in the above definition for $n=5$ where x_{1} refers to the horizontal dimension:

Note that as ℓ tends to $0, n$ tends to ∞. We state the next intuitive lemma without proof:
Lemma 1. Suppose that the curve C in Definition 2 is defined by $\boldsymbol{r}(t)=\left[x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right]$ with $t \in\left[t_{1}, t_{2}\right]$. When $f\left(x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right)$ is continuous in $\left[t_{1}, t_{2}\right]$, it holds that

$$
\int_{C} f\left(x_{1}, \ldots, x_{d}\right) d x_{1}=\int_{t_{1}}^{t_{2}} f\left(x_{1}(t), \ldots, x_{d}(t)\right) \frac{d x_{1}}{d t} d t
$$

Example 1. Consider the circle $x^{2}+y^{2}=1$. Let C be the arc from point $q_{1}=(\sqrt{3} / 2,1 / 2)$ counterclockwise to point $q_{2}=(1 / 2, \sqrt{3} / 2)$. Calculate $\int_{C} \frac{1}{y} d x$.
Solution. The circle can be represented with $\boldsymbol{r}(t)=[x(t), y(t)]$ where $x(t)=\cos (t)$ and $y(t)=\sin (t)$. q_{1} and q_{2} correspond to $\boldsymbol{r}(\pi / 6)$ and $\boldsymbol{r}(\pi / 3)$, respectively. Hence, we have:

$$
\begin{aligned}
\int_{C} \frac{1}{y} d x & =\int_{\pi / 6}^{\pi / 3} \frac{1}{y} \frac{d x}{d t} d t \\
& =\int_{\pi / 6}^{\pi / 3} \frac{1}{\sin (t)} \cdot(-\sin (t)) d t \\
& =\int_{\pi / 6}^{\pi / 3}-1 d t=-\pi / 6 .
\end{aligned}
$$

Definition 2 requires that C should be smooth. Suppose that C is not a smooth curve, but can be broken into a finite number of smooth curves $C_{1}, C_{2}, \ldots, C_{k}$ (for some k). We say that C is piecewise smooth. For such a curve C, we define

$$
\int_{C} f\left(x_{1}, \ldots, x_{d}\right) d x_{1}=\sum_{i=1}^{k} \int_{C_{i}} f\left(x_{1}(t), \ldots, x_{d}(t)\right) d x_{1}
$$

For example, in the figure below, let curve C be the concatenation of C_{1}, C_{2} and C_{3}. C is not smooth, but is piecewise smooth.

Although the statement of Definition 2 is about coordinate x_{1}, we can define $\int_{C} f\left(x_{1}, \ldots, x_{d}\right) d x_{i}$ for any coordinate x_{i} with $i \in[1, d]$ in the same manner.

2 Line Integrals by All Coordinates

Suppose that we are given d scalar functions $f_{1}\left(x_{1}, \ldots, x_{d}\right), f_{2}\left(x_{1}, \ldots, x_{d}\right), \ldots, f_{d}\left(x_{1}, \ldots, x_{d}\right)$. Let C be a smooth curve in \mathbb{R}^{d} from point p to point q. Also, let $\boldsymbol{r}(t)=\left[x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right]$ be a parametric form of C, such that p and q are given by $t=t_{p}$ and $t=t_{q}$, respectively.

From our earlier discussion, when all of $f_{1}\left(x_{1}(t), \ldots, x_{d}(t)\right), f_{2}\left(x_{1}(t), \ldots, x_{d}(t)\right), \ldots, f_{d}\left(x_{1}(t), \ldots, x_{d}(t)\right)$ are continuous in $\left[t_{p}, t_{q}\right]$, it holds that

$$
\begin{align*}
& \int_{C} f_{1}\left(x_{1}, \ldots, x_{d}\right) d x_{1}+\int_{C} f_{2}\left(x_{2},, \ldots, x_{d}\right) d x_{2}+\ldots+\int_{C} f_{d}\left(x_{d},, \ldots, x_{d}\right) d x_{d} \\
= & \int_{t_{p}}^{t_{q}}\left(f_{1}\left(x_{1}(t), \ldots, x_{d}(t)\right) \frac{d x_{1}}{d t}+f_{2}\left(x_{1}(t), \ldots, x_{d}(t)\right) \frac{d x_{2}}{d t}+\ldots+f_{d}\left(x_{1}(t), \ldots, x_{d}(t) \frac{d x_{d}}{d t}\right) d t .\right. \tag{1}
\end{align*}
$$

Example 2. Consider the circle $x^{2}+y^{2}=1$. Let C be the arc from $q_{1}=(\sqrt{3} / 2,1 / 2)$ counterclockwise to point $q_{2}=(1 / 2, \sqrt{3} / 2)$. Calculate

$$
\int_{C} \frac{1}{y} d x+\int_{C} \frac{y}{x} d y
$$

Solution. The circle can be represented with $\boldsymbol{r}(t)=[x(t), y(t)]$ where $x(t)=\cos (t)$ and $y(t)=\sin (t)$. Points p and q correspond to $\boldsymbol{r}(\pi / 6)$ and $\boldsymbol{r}(\pi / 3)$, respectively. Hence, we have:

$$
\begin{aligned}
\int_{C} \frac{1}{y} d x+\int_{C} \frac{y}{x} d y & =\int_{\pi / 6}^{\pi / 3} \frac{1}{y} \frac{d x}{d t} d t+\int_{\pi / 6}^{\pi / 3} \frac{y}{x} \frac{d y}{d t} d t \\
& =\int_{\pi / 6}^{\pi / 3} \frac{1}{\sin (t)} \cdot(-\sin (t)) d t+\int_{\pi / 6}^{\pi / 3} \frac{\sin (t)}{\cos (t)} \cdot \cos (t) d t \\
& =\int_{\pi / 6}^{\pi / 3}-1 d t+\int_{\pi / 6}^{\pi / 3} \sin (t) d t \\
& =-\frac{\pi}{6}+\frac{\sqrt{3}-1}{2} .
\end{aligned}
$$

3 Line Integrals by Dot Product

We are ready to define how to perform integration along a curve using a vector function. For this purpose, let us introduce another convention. Suppose that $\boldsymbol{f}\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is a scalar function with real-valued parameters. Given a point $p=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ in \mathbb{R}^{d}, we use $\boldsymbol{f}(p)$ as a short form for $\boldsymbol{f}\left(x_{1}, x_{2}, \ldots, x_{d}\right)$.

Definition 2. Let:

- $\boldsymbol{f}\left(x_{1}, \ldots, x_{d}\right)$ be a vector function whose output is a d-dimensional vector
- $\boldsymbol{r}(t)$ be a smooth d-dimensional curve, and
- C be an arc on the curve with a starting point and an ending point.

Break C into a sequence of n curves $C_{1}, C_{2}, \ldots, C_{n}$ such that (i) C_{1} has the same starting point as C, (ii) for $j \in[1, n-1]$, the ending point of C_{j} is the starting point of C_{j+1}, and (iii) C_{n} has the same ending point as C. Define ℓ to be the maximum length of $C_{1}, C_{2}, \ldots, C_{n}$. For each $j \in[1, n]$:

- choose an arbitrary point p_{j} on C_{j}
- denote by $\boldsymbol{\Delta}[j]$ be the vector defined by the directed segment pointing from the starting point of C_{j} to the ending point of C_{j}.

If the following limit exists:

$$
\lim _{\ell \rightarrow 0} \sum_{j=1}^{n} \boldsymbol{f}\left(p_{j}\right) \cdot \boldsymbol{\Delta}[j]
$$

then we define

$$
\begin{equation*}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r} \tag{2}
\end{equation*}
$$

to be the above limit.
Although the above definition may look a bit complicated, it is essentially the same as line integrals by "all coordinates". To see this, write out the components of $\boldsymbol{f}\left(x_{1}, \ldots, x_{d}\right)$ and $\boldsymbol{\Delta}[j]$ as:

$$
\begin{aligned}
\boldsymbol{f}\left(x_{1}, \ldots, x_{d}\right) & =\left[f_{1}\left(x_{1}, \ldots, x_{d}\right), \ldots, f_{d}\left(x_{1}, \ldots, x_{d}\right)\right] \\
\boldsymbol{\Delta}[j] & =\left[\Delta_{1}[j], \ldots, \Delta_{d}[j]\right] .
\end{aligned}
$$

Then:

$$
\begin{aligned}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r} & =\lim _{\ell \rightarrow 0} \sum_{j=1}^{n} \boldsymbol{f}\left(p_{j}\right) \cdot \boldsymbol{\Delta}[j] \\
& =\lim _{\ell \rightarrow 0} \sum_{j=1}^{n}\left(f_{1}\left(p_{j}\right) \cdot \Delta_{1}[j]+\ldots+f_{d}\left(p_{j}\right) \cdot \Delta_{d}[j]\right) \\
& =\left(\lim _{\ell \rightarrow 0} \sum_{j=1}^{n} f_{1}\left(p_{j}\right) \cdot \Delta_{1}[j]\right)+\ldots+\left(\lim _{\ell \rightarrow 0} \sum_{j=1}^{n} f_{d}\left(p_{j}\right) \cdot \Delta_{d}[j]\right) \\
& =\int_{C} f_{1}\left(x_{1}, \ldots, x_{d}\right) d x_{1}+\int_{C} f_{2}\left(x_{1}, \ldots, x_{d}\right) d x_{2}+\ldots+\int_{C} f_{d}\left(x_{1}, \ldots, x_{d}\right) d x_{d}
\end{aligned}
$$

Example 3. Define:

$$
\boldsymbol{f}(x, y)=\left[\frac{1}{y}, \frac{y}{x}\right] .
$$

Define a curve:

$$
\boldsymbol{r}(t)=[\cos t, \sin t] .
$$

Let C be the arc on the above curve defined by increasing t from $\pi / 6$ to $\pi / 3$. Calculate $\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r}$.

Solution. From the earlier discussion we know that

$$
\begin{aligned}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r} & =\int_{C} \frac{1}{y} d x+\int_{C} \frac{y}{x} d y \\
& =\int_{\pi / 6}^{\pi / 3}\left(\frac{1}{y} \frac{d x}{d t}+\frac{y}{x} \frac{d y}{d t}\right) d t
\end{aligned}
$$

The rest of the derivation is the same as that in Example 2.
The above example actually illustrates the following transformation:

$$
\begin{aligned}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r} & =\int_{C} f_{1}\left(x_{1}, \ldots, x_{d}\right) d x_{1}+\ldots+\int_{C} f_{d}\left(x_{1}, \ldots, x_{d}\right) d x_{d} \\
& =\int_{C}\left(f_{1}\left(x_{1}, \ldots, x_{d}\right) \frac{d x_{1}}{d t}+\ldots+f_{d}\left(x_{1}, \ldots, x_{d}\right) \frac{d x_{d}}{d t}\right) d t \\
& =\int_{C}\left[f_{1}\left(x_{1}, \ldots, x_{d}\right), \ldots, f_{d}\left(x_{1}, \ldots, x_{d}\right)\right] \cdot\left[\frac{d x_{1}}{d t}, \ldots, \frac{d x_{d}}{d t}\right] d t \\
& =\int_{C} \boldsymbol{f}\left(x_{1}(t), \ldots, x_{d}(t)\right) \cdot \boldsymbol{r}^{\prime}(t) d t
\end{aligned}
$$

The above equation provides a neater way to calculate $\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r}$, as shown in the example below.
Example 4. Let us re-calculate the line integral in Example 3:

$$
\begin{aligned}
\int_{C} \boldsymbol{f}(\boldsymbol{r}) \cdot d \boldsymbol{r} & =\int_{\pi / 6}^{\pi / 3} \boldsymbol{f}(x(t), y(t)) \cdot \boldsymbol{r}^{\prime}(t) d t \\
& =\int_{\pi / 6}^{\pi / 3}\left[\frac{1}{\sin (t)}, \frac{\sin (t)}{\cos (t)}\right] \cdot[-\sin (t), \cos (t)] d t \\
& =\int_{\pi / 6}^{\pi / 3}-1+\sin (t) d t \\
& =-\frac{\pi}{6}+\frac{\sqrt{3}-1}{2}
\end{aligned}
$$

