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Line integrals by arc length can be regarded as performing integration using a scalar function along
a curve. Today we will discuss a different form of line integrals, which perform integration using a
vector function along a curve. Next, we will take several steps — in Sections 1, 2, and 3, respectively
— to define this form of integrals.

1 Line Integrals by One Coordinate

Let us first introduce a convention. Suppose that f(x1, x2, ..., xd) is a scalar function with real-
valued parameters. Given a point p = (x1, x2, ..., xd) in Rd, we use f(p) as a short form for
f(x1, x2, ..., xd).

Definition 1. Let C be a smooth curve in Rd with a starting point and an ending point. Break C
into a sequence of n curves C1, C2, ..., Cn such that (i) C1 has the same starting point as C, (ii)
for j ∈ [1, n − 1], the ending point of Cj is the starting point of Cj+1, and (iii) Cn has the same
ending point as C. Define ` to be the maximum length of C1, C2, ..., Cn. For each j ∈ [1, n]:

• choose an arbitrary point pj on Cj

• denote by ∆1[j] = x′1[j] − x1[j] where x1[j] and x′1[j] are the x1-coordinates of the starting
and ending points of Cj, respectively.

For a scalar function f(x1, x2, ..., xd), if the following limit exists:

lim
`→0

n∑
j=1

f(pj) ·∆1[j]

then we define ∫
C
f(x1, ..., xd) dx1

to be the above limit.

The figure below illustrates the curve partitioning in the above definition for n = 5 where x1
refers to the horizontal dimension:
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Note that as ` tends to 0, n tends to ∞. We state the next intuitive lemma without proof:

Lemma 1. Suppose that the curve C in Definition 2 is defined by r(t) = [x1(t), x2(t), ..., xd(t)]
with t ∈ [t1, t2]. When f(x1(t), x2(t), ..., xd(t)) is continuous in [t1, t2], it holds that∫

C
f(x1, ..., xd) dx1 =

∫ t2

t1

f(x1(t), ..., xd(t))
dx1
dt

dt.

Example 1. Consider the circle x2 + y2 = 1. Let C be the arc from point q1 = (
√

3/2, 1/2)
counterclockwise to point q2 = (1/2,

√
3/2). Calculate

∫
C

1
y dx.

Solution. The circle can be represented with r(t) = [x(t), y(t)] where x(t) = cos(t) and y(t) = sin(t).
q1 and q2 correspond to r(π/6) and r(π/3), respectively. Hence, we have:∫

C

1

y
dx =

∫ π/3

π/6

1

y

dx

dt
dt

=

∫ π/3

π/6

1

sin(t)
· (− sin(t)) dt

=

∫ π/3

π/6
−1 dt = −π/6.

Definition 2 requires that C should be smooth. Suppose that C is not a smooth curve, but
can be broken into a finite number of smooth curves C1, C2, ..., Ck (for some k). We say that C is
piecewise smooth. For such a curve C, we define∫

C
f(x1, ..., xd) dx1 =

k∑
i=1

∫
Ci

f(x1(t), ..., xd(t)) dx1.

For example, in the figure below, let curve C be the concatenation of C1, C2 and C3. C is not
smooth, but is piecewise smooth.

C1

C2

C3

Although the statement of Definition 2 is about coordinate x1, we can define
∫
C f(x1, ..., xd) dxi

for any coordinate xi with i ∈ [1, d] in the same manner.
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2 Line Integrals by All Coordinates

Suppose that we are given d scalar functions f1(x1, ..., xd), f2(x1, ..., xd), ..., fd(x1, ..., xd). Let C be
a smooth curve in Rd from point p to point q. Also, let r(t) = [x1(t), x2(t), ..., xd(t)] be a parametric
form of C, such that p and q are given by t = tp and t = tq, respectively.

From our earlier discussion, when all of f1(x1(t), ..., xd(t)), f2(x1(t), ..., xd(t)), ..., fd(x1(t), ..., xd(t))
are continuous in [tp, tq], it holds that∫

C
f1(x1, ..., xd) dx1 +

∫
C
f2(x2, , ..., xd) dx2 + ...+

∫
C
fd(xd, , ..., xd) dxd

=

∫ tq

tp

(
f1(x1(t), ..., xd(t))

dx1
dt

+ f2(x1(t), ..., xd(t))
dx2
dt

+ ...+ fd(x1(t), ..., xd(t))
dxd
dt

)
dt.

(1)

Example 2. Consider the circle x2 + y2 = 1. Let C be the arc from q1 = (
√

3/2, 1/2) counter-
clockwise to point q2 = (1/2,

√
3/2). Calculate∫

C

1

y
dx+

∫
C

y

x
dy.

Solution. The circle can be represented with r(t) = [x(t), y(t)] where x(t) = cos(t) and y(t) = sin(t).
Points p and q correspond to r(π/6) and r(π/3), respectively. Hence, we have:∫

C

1

y
dx+

∫
C

y

x
dy =

∫ π/3

π/6

1

y

dx

dt
dt+

∫ π/3

π/6

y

x

dy

dt
dt

=

∫ π/3

π/6

1

sin(t)
· (− sin(t)) dt+

∫ π/3

π/6

sin(t)

cos(t)
· cos(t) dt

=

∫ π/3

π/6
−1 dt+

∫ π/3

π/6
sin(t)dt

= −π
6

+

√
3− 1

2
.

3 Line Integrals by Dot Product

We are ready to define how to perform integration along a curve using a vector function. For this
purpose, let us introduce another convention. Suppose that f(x1, x2, ..., xd) is a scalar function
with real-valued parameters. Given a point p = (x1, x2, ..., xd) in Rd, we use f(p) as a short form
for f(x1, x2, ..., xd).

Definition 2. Let:

• f(x1, ..., xd) be a vector function whose output is a d-dimensional vector

• r(t) be a smooth d-dimensional curve, and

• C be an arc on the curve with a starting point and an ending point.
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Break C into a sequence of n curves C1, C2, ..., Cn such that (i) C1 has the same starting point as
C, (ii) for j ∈ [1, n− 1], the ending point of Cj is the starting point of Cj+1, and (iii) Cn has the
same ending point as C. Define ` to be the maximum length of C1, C2, ..., Cn. For each j ∈ [1, n]:

• choose an arbitrary point pj on Cj

• denote by ∆[j] be the vector defined by the directed segment pointing from the starting point
of Cj to the ending point of Cj.

If the following limit exists:

lim
`→0

n∑
j=1

f(pj) ·∆[j]

then we define ∫
C
f(r) · dr (2)

to be the above limit.

Although the above definition may look a bit complicated, it is essentially the same as line
integrals by “all coordinates”. To see this, write out the components of f(x1, ..., xd) and ∆[j] as:

f(x1, ..., xd) = [f1(x1, ..., xd), ..., fd(x1, ..., xd)]

∆[j] = [∆1[j], ...,∆d[j]].

Then:∫
C
f(r) · dr = lim

`→0

n∑
j=1

f(pj) ·∆[j]

= lim
`→0

n∑
j=1

(
f1(pj) ·∆1[j] + ...+ fd(pj) ·∆d[j]

)
=

(
lim
`→0

n∑
j=1

f1(pj) ·∆1[j]
)

+ ...+
(

lim
`→0

n∑
j=1

fd(pj) ·∆d[j]
)

=

∫
C
f1(x1, ..., xd) dx1 +

∫
C
f2(x1, ..., xd) dx2 + ...+

∫
C
fd(x1, ..., xd) dxd

Example 3. Define:

f(x, y) =

[
1

y
,
y

x

]
.

Define a curve:

r(t) = [cos t, sin t].

Let C be the arc on the above curve defined by increasing t from π/6 to π/3. Calculate
∫
C f(r) ·dr.
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Solution. From the earlier discussion we know that∫
C
f(r) · dr =

∫
C

1

y
dx+

∫
C

y

x
dy

=

∫ π/3

π/6

(
1

y

dx

dt
+
y

x

dy

dt

)
dt

The rest of the derivation is the same as that in Example 2.

The above example actually illustrates the following transformation:∫
C
f(r) · dr =

∫
C
f1(x1, ..., xd) dx1 + ...+

∫
C
fd(x1, ..., xd) dxd

=

∫
C

(
f1(x1, ..., xd)

dx1
dt

+ ...+ fd(x1, ..., xd)
dxd
dt

)
dt

=

∫
C

[f1(x1, ..., xd), ..., fd(x1, ..., xd)] ·
[
dx1
dt

, ...,
dxd
dt

]
dt

=

∫
C
f(x1(t), ..., xd(t)) · r′(t) dt.

The above equation provides a neater way to calculate
∫
C f(r) ·dr, as shown in the example below.

Example 4. Let us re-calculate the line integral in Example 3:∫
C
f(r) · dr =

∫ π/3

π/6
f(x(t), y(t)) · r′(t) dt

=

∫ π/3

π/6

[
1

sin(t)
,

sin(t)

cos(t)

]
· [− sin(t), cos(t)] dt

=

∫ π/3

π/6
−1 + sin(t) dt

= −π
6

+

√
3− 1

2
.
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