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In general, a curve C has a starting point p and an ending point q. However, it is possible that
p = q, i.e., the starting point coincides with the ending point, in which case C is a closed curve.
In this lecture, we will see a beautiful relationship between 2D line integrals on closed curves and
double integrals.

1 Monotone Regions

Let C be a piecewise-smooth closed curve in R2, and D be the region that is enclosed by C. We
say that D is monotone if it satisfies both of the following conditions:

• any vertical line intersects C into two points, unless the line passes the leftmost or rightmost
point of C;

• any horizontal line intersects C into two points, unless the line passes the top-most or bottom-
most point of C.

a monotone region not a monotone region

C

D

positive direction

Suppose that D is monotone. We designate the positive direction of C as the counterclockwise
direction. Choose an arbitrary point p on C, and denote the same point p also as q. We can view
C instead as a curve obtained by walking from p counterclockwise along the boundary of D until
hitting q.

We will now prove the first version of the Green’s Theorem:

Theorem 1 (Green’s Theorem). Let f1(x, y) and f2(x, y) be scalar functions such that ∂f1
∂y and

∂f2
∂x are continuous in D. Then:∫

C
f1 dx+ f2 dy =

∫∫
D

∂f2
∂x
− ∂f1

∂y
dxdy. (1)

Proof. We will first prove that ∫
C
f1 dx = −

∫∫
D

∂f1
∂y

dxdy. (2)
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Let a (and b) be the minimum (and maximum, resp.) x-coordinate of the points on C. Any
monotone D can be regarded as the region between two curves: y = φ1(x) and y = φ2(x), for the
range x ∈ [a, b]. Without loss of generality, let y = φ1(x) be the lower curve, and y = φ2(x) the
upper curve, as shown as the blue curves below:

D

y = φ1(x)

y = φ2(x)

a b

C1

C2

C3

C4

We break C into a sequence of C1, C2, C3 and C4. Note that C2 and C4 are vertical segments
(shown above in red). Therefore:∫

C
f1 dx =

∫
C1

f1 dx+

∫
C2

f1 dx+

∫
C3

f1 dx+

∫
C4

f1 dx

=

∫
C1

f1 dx+

∫
C3

f1 dx

=

∫ b

a
f1(x, φ1(x)) dx+

∫ a

b
f1(x, φ2(x)) dx

=

∫ b

a
f1(x, φ1(x))− f1(x, φ2(x)) dx.

On the other hand: ∫∫
D

∂f1
∂y

dxdy =

∫ b

a

(∫ φ2(x)

φ1(x)

∂f1
∂y

dy

)
dx

=

∫ b

a
f1(x, φ2(x))− f1(x, φ1(x)) dx.

= −
∫
C
f1 dx

which establishes (2).

By repeating the above argument with respect to the y-dimension, we get∫
C
f2 dy =

∫∫
D

∂f2
∂x

dxdy. (3)

Putting together (2) and (3) proves (1).

As a special case, setting f1(x, y) = −y and f2(x, y) = x, we obtain from (1):∫
C

(−y dx+ x dy) = 2

∫∫
D
dxdy. (4)
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Note that the right hand side of the above is twice the area of D.

Example 1. Calculate the area of the ellipse x2

a2
+ y2

b2
= 1.

Solution. Let C be the ellipse’s boundary, and D the ellipse itself. We know from (4) that

area(D) =
1

2

∫
C

(−y dx+ x dy) .

Introduce x(t) = a cos t and y(t) = b sin t. We have from the above that

area(D) =
1

2

∫ 2π

0
−b sin(t)

dx

dt
+ a cos(t)

dy

dt
dt.

=
1

2

∫ 2π

0
ab sin2(t) + ab cos2(t) dt.

= abπ.

It may be interesting for you to evaluate
∫∫
D dxdy directly without converting it to a line integral,

and compare the amount calculation of the two solutions.

Example 2. Let D be the square [−1, 1] × [−1, 1] (namely, x-projection [−1, 1] and y-projection
[−1, 1]). Let C be the boundary of D in the positive direction. Calculate

∫
C 6y2 dx+ 2x− 2y4 dy.

Solution. Let f1(x, y) = 6y2 and f2(x, y) = 2x− 2y4. By Theorem 1, we have:∫
C

(6y2 dx+ 2x− 2y4 dy) =

∫∫
D

2− 12y dxdy

=

∫∫
D

2 dxdy −
∫∫

D
12y dxdy

= 8−
∫ 1

−1

(
12y

∫ 1

−1
dx

)
dy

= 8−
∫ 1

−1
24y dy = 8.

Remark. Notice from the above examples that in a line integral with a closed curve C we do not
specify where C starts and ends explicitly. The reason is clear from Theorem 1: it does not matter!
You can break C at any point p, and treat it as a curve that starts from p, goes a round, and then
ends at p. The line integral is always the same regardless of your choice.

2 Green’s Theorem for Non-Monotone Regions

Next, we extend Theorem 1 to any closed region D whose boundary is a piecewise-smooth curve.

Regions without Holes. Let D be a (possibly non-monotone) region enclosed by a closed
piecewise-smooth curve C. As before, we designate the positive direction of C as the counter-
clockwise direction.
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Theorem 2. Theorem 1 still holds even if C is not monotone.

We will not prove the theorem formally, but we can gain the key idea from the example below.
The leftmost figure is a non-monotone region D enclosed by curve C. Let us break it with two
dashed line segments into 4 regions D1, D2, D3, and D4, each of which is monotone.

D1

C1

D2

C2

C

D1

D2

D3

D4 D3

C3

D4

C4

Let C1, C2, ..., C4 be the boundary curves of D1, D2, ..., D4, respectively. Applying Theorem 1 on
each curve, we get:

4∑
i=1

∫
Ci

(f1 dx+ f2 dy) =
4∑
i=1

∫∫
Di

∂f2
∂x
− ∂f1

∂y
dxdy.

⇒
4∑
i=1

∫
Ci

(f1 dx+ f2 dy) =

∫∫
D

∂f2
∂x
− ∂f1

∂y
dxdy.

Interestingly, the left hand side equals
∫
C (f1 dx+ f2 dy)! Notice that every dashed line is integrated

exactly twice with opposite directions!

Regions with Holes. Now consider D to be any connected region, i.e., namely, we can move from
a point in D to any other point in D without leaving D. Note that D may contain “holes”; for
example, see the figure below. We define the boundary of D as the set of points p in D such that,
any circle centered at p with an arbitrarily small radius must contain some points not belonging to
D. In the figure below, the boundary of D consists of two curves C1 and C2.

C1

C2

D

Consider, in general, that the boundary C of D is a set of closed piecewise smooth curves
C1, C2, ..., Ck for some finite value k (e.g., k = 2 in the above figure). For each Ci (1 ≤ i ≤ k),
we define its positive direction as follows: if we walk along that direction, then D is on our left
hand side at all times. In the above example, the positive direction of C1 is the counterclockwise
direction, while that of C2 is the clockwise direction.

We now present the Green’s theorem in its most general form:

Theorem 3. Theorem 1 still holds on the connected region D and its boundary C defined as above.
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Again, we omit a formal proof of the theorem, but illustrate the key idea using an example.
Consider the region D demonstrated earlier. We can cut it into two regions, neither of which has
a hole as shown below:

D1

C ′
1

D2

C ′
2

D1

D2

Let C ′1, C
′
2 be the boundaries of D1 and D2, respectively. We know

2∑
i=1

∫
C′

i

(f1 dx+ f2 dy) =
2∑
i=1

∫∫
Di

∂f2
∂x
− ∂f1

∂y
dxdy.

⇒
2∑
i=1

∫
C′

i

(f1 dx+ f2 dy) =

∫∫
D

∂f2
∂x
− ∂f1

∂y
dxdy.

The left hand side equals
∫
C (f1 dx+ f2 dy), noticing that every dashed line is integrated exactly

twice with opposite directions.

Example 3. Let C1 be the circle x2 + y2 = 10, and C2 be the circle x2 + y2 = 5. Let D be the
region between the two circles (i.e., the shaded area in the figure below). Let C = {C1, C2} be the
boundary of D with C1, C2 in the positive direction.

D

C1

C2

It is clear that area(D) = 10π − 5π = 5π. Next, we will calculate the area(D) by line integral.
According to Theorem 3, we have:

area(D) =

∫∫
D
dxdy =

1

2

∫
C

(−y dx+ x dy)

=
1

2

(∫
C1

(−y dx+ x dy) +

∫
C2

(−y dx+ x dy)

)
. (5)
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Represent C1 in the parametric form [
√

10 cos(u),
√

10 sin(u)]. Then:∫
C1

(−y dx+ x dy) =

∫ 2π

0
−
√

10 sin(u)
dx

du
+
√

10 cos(u)
dy

du
du

=

∫ 2π

0
(−
√

10 sin(u))2 + (
√

10 cos(u))2 du

= 20π.

Represent C2 in the parametric form [
√

5 cos(v),
√

5 sin(v)]. Then:∫
C2

(−y dx+ x dy) =

∫ 0

2π
−
√

5 sin(v)
dx

dv
+
√

5 cos(v)
dy

dv
dv

=

∫ 0

2π
(−
√

5 sin(v))2 + (
√

5 cos(v))2 dv

= −10π.

Therefore, (5) evaluates to 1
2(20π − 10π) = 5π.
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