Lecture Notes: Green's Theorem

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

In general, a curve C has a starting point p and an ending point q. However, it is possible that $p=q$, i.e., the starting point coincides with the ending point, in which case C is a closed curve. In this lecture, we will see a beautiful relationship between 2D line integrals on closed curves and double integrals.

1 Monotone Regions

Let C be a piecewise-smooth closed curve in \mathbb{R}^{2}, and D be the region that is enclosed by C. We say that D is monotone if it satisfies both of the following conditions:

- any vertical line intersects C into two points, unless the line passes the leftmost or rightmost point of C;
- any horizontal line intersects C into two points, unless the line passes the top-most or bottommost point of C.
a monotone region

not a monotone region

Suppose that D is monotone. We designate the positive direction of C as the counterclockwise direction. Choose an arbitrary point p on C, and denote the same point p also as q. We can view C instead as a curve obtained by walking from p counterclockwise along the boundary of D until hitting q.

We will now prove the first version of the Green's Theorem:
Theorem 1 (Green's Theorem). Let $f_{1}(x, y)$ and $f_{2}(x, y)$ be scalar functions such that $\frac{\partial f_{1}}{\partial y}$ and $\frac{\partial f_{2}}{\partial x}$ are continuous in D. Then:

$$
\begin{equation*}
\int_{C} f_{1} d x+f_{2} d y=\iint_{D} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y \tag{1}
\end{equation*}
$$

Proof. We will first prove that

$$
\begin{equation*}
\int_{C} f_{1} d x=-\iint_{D} \frac{\partial f_{1}}{\partial y} d x d y . \tag{2}
\end{equation*}
$$

Let a (and b) be the minimum (and maximum, resp.) x-coordinate of the points on C. Any monotone D can be regarded as the region between two curves: $y=\phi_{1}(x)$ and $y=\phi_{2}(x)$, for the range $x \in[a, b]$. Without loss of generality, let $y=\phi_{1}(x)$ be the lower curve, and $y=\phi_{2}(x)$ the upper curve, as shown as the blue curves below:

We break C into a sequence of C_{1}, C_{2}, C_{3} and C_{4}. Note that C_{2} and C_{4} are vertical segments (shown above in red). Therefore:

$$
\begin{aligned}
\int_{C} f_{1} d x & =\int_{C_{1}} f_{1} d x+\int_{C_{2}} f_{1} d x+\int_{C_{3}} f_{1} d x+\int_{C_{4}} f_{1} d x \\
& =\int_{C_{1}} f_{1} d x+\int_{C_{3}} f_{1} d x \\
& =\int_{a}^{b} f_{1}\left(x, \phi_{1}(x)\right) d x+\int_{b}^{a} f_{1}\left(x, \phi_{2}(x)\right) d x \\
& =\int_{a}^{b} f_{1}\left(x, \phi_{1}(x)\right)-f_{1}\left(x, \phi_{2}(x)\right) d x .
\end{aligned}
$$

On the other hand:

$$
\begin{aligned}
\iint_{D} \frac{\partial f_{1}}{\partial y} d x d y & =\int_{a}^{b}\left(\int_{\phi_{1}(x)}^{\phi_{2}(x)} \frac{\partial f_{1}}{\partial y} d y\right) d x \\
& =\int_{a}^{b} f_{1}\left(x, \phi_{2}(x)\right)-f_{1}\left(x, \phi_{1}(x)\right) d x \\
& =-\int_{C} f_{1} d x
\end{aligned}
$$

which establishes (2).
By repeating the above argument with respect to the y-dimension, we get

$$
\begin{equation*}
\int_{C} f_{2} d y=\iint_{D} \frac{\partial f_{2}}{\partial x} d x d y \tag{3}
\end{equation*}
$$

Putting together (2) and (3) proves (1).
As a special case, setting $f_{1}(x, y)=-y$ and $f_{2}(x, y)=x$, we obtain from (1):

$$
\begin{equation*}
\int_{C}(-y d x+x d y)=2 \iint_{D} d x d y \tag{4}
\end{equation*}
$$

Note that the right hand side of the above is twice the area of D.
Example 1. Calculate the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Solution. Let C be the ellipse's boundary, and D the ellipse itself. We know from (4) that

$$
\operatorname{area}(D)=\frac{1}{2} \int_{C}(-y d x+x d y)
$$

Introduce $x(t)=a \cos t$ and $y(t)=b \sin t$. We have from the above that

$$
\begin{aligned}
\operatorname{area}(D) & =\frac{1}{2} \int_{0}^{2 \pi}-b \sin (t) \frac{d x}{d t}+a \cos (t) \frac{d y}{d t} d t . \\
& =\frac{1}{2} \int_{0}^{2 \pi} a b \sin ^{2}(t)+a b \cos ^{2}(t) d t . \\
& =a b \pi
\end{aligned}
$$

It may be interesting for you to evaluate $\iint_{D} d x d y$ directly without converting it to a line integral, and compare the amount calculation of the two solutions.

Example 2. Let D be the square $[-1,1] \times[-1,1]$ (namely, x-projection $[-1,1]$ and y-projection $[-1,1])$. Let C be the boundary of D in the positive direction. Calculate $\int_{C} 6 y^{2} d x+2 x-2 y^{4} d y$.

Solution. Let $f_{1}(x, y)=6 y^{2}$ and $f_{2}(x, y)=2 x-2 y^{4}$. By Theorem 1, we have:

$$
\begin{aligned}
\int_{C}\left(6 y^{2} d x+2 x-2 y^{4} d y\right) & =\iint_{D} 2-12 y d x d y \\
& =\iint_{D} 2 d x d y-\iint_{D} 12 y d x d y \\
& =8-\int_{-1}^{1}\left(12 y \int_{-1}^{1} d x\right) d y \\
& =8-\int_{-1}^{1} 24 y d y=8
\end{aligned}
$$

Remark. Notice from the above examples that in a line integral with a closed curve C we do not specify where C starts and ends explicitly. The reason is clear from Theorem 1: it does not matter! You can break C at any point p, and treat it as a curve that starts from p, goes a round, and then ends at p. The line integral is always the same regardless of your choice.

2 Green's Theorem for Non-Monotone Regions

Next, we extend Theorem 1 to any closed region D whose boundary is a piecewise-smooth curve.
Regions without Holes. Let D be a (possibly non-monotone) region enclosed by a closed piecewise-smooth curve C. As before, we designate the positive direction of C as the counterclockwise direction.

Theorem 2. Theorem 1 still holds even if C is not monotone.
We will not prove the theorem formally, but we can gain the key idea from the example below. The leftmost figure is a non-monotone region D enclosed by curve C. Let us break it with two dashed line segments into 4 regions D_{1}, D_{2}, D_{3}, and D_{4}, each of which is monotone.

Let $C_{1}, C_{2}, \ldots, C_{4}$ be the boundary curves of $D_{1}, D_{2}, \ldots, D_{4}$, respectively. Applying Theorem 1 on each curve, we get:

$$
\begin{aligned}
\sum_{i=1}^{4} \int_{C_{i}}\left(f_{1} d x+f_{2} d y\right) & =\sum_{i=1}^{4} \iint_{D_{i}} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y . \\
\Rightarrow \sum_{i=1}^{4} \int_{C_{i}}\left(f_{1} d x+f_{2} d y\right) & =\iint_{D} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y .
\end{aligned}
$$

Interestingly, the left hand side equals $\int_{C}\left(f_{1} d x+f_{2} d y\right)$! Notice that every dashed line is integrated exactly twice with opposite directions!

Regions with Holes. Now consider D to be any connected region, i.e., namely, we can move from a point in D to any other point in D without leaving D. Note that D may contain "holes"; for example, see the figure below. We define the boundary of D as the set of points p in D such that, any circle centered at p with an arbitrarily small radius must contain some points not belonging to D. In the figure below, the boundary of D consists of two curves C_{1} and C_{2}.

Consider, in general, that the boundary C of D is a set of closed piecewise smooth curves $C_{1}, C_{2}, \ldots, C_{k}$ for some finite value k (e.g., $k=2$ in the above figure). For each $C_{i}(1 \leq i \leq k)$, we define its positive direction as follows: if we walk along that direction, then D is on our left hand side at all times. In the above example, the positive direction of C_{1} is the counterclockwise direction, while that of C_{2} is the clockwise direction.

We now present the Green's theorem in its most general form:
Theorem 3. Theorem 1 still holds on the connected region D and its boundary C defined as above.

Again, we omit a formal proof of the theorem, but illustrate the key idea using an example. Consider the region D demonstrated earlier. We can cut it into two regions, neither of which has a hole as shown below:

Let $C_{1}^{\prime}, C_{2}^{\prime}$ be the boundaries of D_{1} and D_{2}, respectively. We know

$$
\begin{aligned}
\sum_{i=1}^{2} \int_{C_{i}^{\prime}}\left(f_{1} d x+f_{2} d y\right) & =\sum_{i=1}^{2} \iint_{D_{i}} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y . \\
\Rightarrow \sum_{i=1}^{2} \int_{C_{i}^{\prime}}\left(f_{1} d x+f_{2} d y\right) & =\iint_{D} \frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y} d x d y .
\end{aligned}
$$

The left hand side equals $\int_{C}\left(f_{1} d x+f_{2} d y\right)$, noticing that every dashed line is integrated exactly twice with opposite directions.

Example 3. Let C_{1} be the circle $x^{2}+y^{2}=10$, and C_{2} be the circle $x^{2}+y^{2}=5$. Let D be the region between the two circles (i.e., the shaded area in the figure below). Let $C=\left\{C_{1}, C_{2}\right\}$ be the boundary of D with C_{1}, C_{2} in the positive direction.

It is clear that $\operatorname{area}(D)=10 \pi-5 \pi=5 \pi$. Next, we will calculate the area (D) by line integral. According to Theorem 3, we have:

$$
\begin{align*}
\operatorname{area}(D)=\iint_{D} d x d y & =\frac{1}{2} \int_{C}(-y d x+x d y) \\
& =\frac{1}{2}\left(\int_{C_{1}}(-y d x+x d y)+\int_{C_{2}}(-y d x+x d y)\right) . \tag{5}
\end{align*}
$$

Represent C_{1} in the parametric form $[\sqrt{10} \cos (u), \sqrt{10} \sin (u)]$. Then:

$$
\begin{aligned}
\int_{C_{1}}(-y d x+x d y) & =\int_{0}^{2 \pi}-\sqrt{10} \sin (u) \frac{d x}{d u}+\sqrt{10} \cos (u) \frac{d y}{d u} d u \\
& =\int_{0}^{2 \pi}(-\sqrt{10} \sin (u))^{2}+(\sqrt{10} \cos (u))^{2} d u \\
& =20 \pi
\end{aligned}
$$

Represent C_{2} in the parametric form $[\sqrt{5} \cos (v), \sqrt{5} \sin (v)]$. Then:

$$
\begin{aligned}
\int_{C_{2}}(-y d x+x d y) & =\int_{2 \pi}^{0}-\sqrt{5} \sin (v) \frac{d x}{d v}+\sqrt{5} \cos (v) \frac{d y}{d v} d v \\
& =\int_{2 \pi}^{0}(-\sqrt{5} \sin (v))^{2}+(\sqrt{5} \cos (v))^{2} d v \\
& =-10 \pi
\end{aligned}
$$

Therefore, (5) evaluates to $\frac{1}{2}(20 \pi-10 \pi)=5 \pi$.

