1 Definition of Arc Lengths

Recall that a curve in \mathbb{R}^d can be represented as a vector function $\mathbf{r}(t) = [x_1(t), x_2(t), ..., x_d(t)]$, where $x_1(t), x_2(t), ..., x_d(t)$ give the coordinates of the point on the curve corresponding to a value of t. If we take a continuous portion of the curve, we get an arc, which is formally defined as:

Definition 1. Given a curve $\mathbf{r}(t)$, an arc of the curve is $\{\mathbf{r}(t) \mid t_0 \leq t \leq t_1\}$ where t_0 and t_1 are real values.

It is worth mentioning that the arc as defined above is sometimes also referred to as “the curve from t_0 to t_1” or as “the curve from point $\mathbf{r}(t_0)$ to point $\mathbf{r}(t_1)$”. In the example below, the curve/arc from t_0 to t_1 is the part of the curve between p and q.

Intuitively, an arc should have a “length”, which we formalize below as a limit:

Definition 2. Let C be an arc given by $\mathbf{r}(t)$ with t ranging from t_0 to t_1. Evenly divide the interval $[t_0, t_1]$ by inserting $n + 1$ break points $\tau_0, \tau_1, \tau_2, ..., \tau_n$ where $\tau_0 = t_0$ and $\tau_i - \tau_{i-1} = (t_1 - t_0)/n$ for each $i \in [1, n]$. Define σ_i to be the straight line segment connecting the points $\mathbf{r}(\tau_{i-1})$ and $\mathbf{r}(\tau_i)$, and denote by $|\sigma_i|$ the length of σ_i. Then, if the following limit exists:

$$\lim_{n \to \infty} \sum_{i=1}^{n} |\sigma_i|$$

we say that the limit is the length of C.

![Diagram of an arc and its segments](image)
The figure above shows an example with \(n = 5 \). Note how we approximate the length of the curve by the total length of a sequence of segments.

In this course, we will be interested mainly in smooth curves. Intuitively, these are curves that (i) do not degenerate into a point, and (ii) do not have “corners” (e.g., the boundary of a triangle is not smooth). Mathematically, we formalize the notion as follows:

Definition 3. Let \(C \) be a curve given by \(\mathbf{r}(t) \) with \(t \) ranging from \(t_0 \) to \(t_1 \). \(C \) is smooth if (i) \(\mathbf{r}'(t) \) is continuous in \([t_0, t_1]\), and (ii) \(\mathbf{r}'(t) \neq \mathbf{0} \) at any \(t \in [t_0, t_1] \).

We will state without proof the following lemma:

Lemma 1. Let \(C \) be as described in Definition 2. If \(C \) is smooth, then the limit (1) always exists.

2 Computing Arc Lengths

Consider a curve given by the vector function \(\mathbf{r}(t) \). Fix a real value \(t_0 \), and consider the arc \(C \) from \(t_0 \) to \(t \). Note that \(C \) extends as \(t \) grows, which means that the length \(s \) of \(C \) is a function of \(t \).

The following is an important lemma:

Lemma 2. If \(C \) is smooth, then it holds that:

\[
\frac{d(s(t))}{dt} = \sqrt{\sum_{i=1}^{d} \left(\frac{d(x_i(t))}{dt} \right)^2}.
\]

We will not present a complete proof of the lemma, but the following discussion will point out the main ideas. Consider the figure below in 2d space. Imagine that we increase \(t \) by a tiny amount \(\Delta t \). By doing so, we have traveled on the curve a little from point \(p \) to point \(q \). \(\Delta x_1 \) and \(\Delta x_2 \) give the coordinate differences of \(p \) and \(q \) on the two dimensions, respectively. When \(\Delta t \) is extremely small, the length \(\Delta s \) of the curve from \(p \) to \(q \) should be very close to the length of the segment connecting \(p \) and \(q \), that is, \(\Delta s \approx \sqrt{(\Delta x_1)^2 + (\Delta x_2)^2} \), which gives \(\frac{\Delta s}{\Delta t} \approx \sqrt{\left(\frac{\Delta x_1}{\Delta t} \right)^2 + \left(\frac{\Delta x_2}{\Delta t} \right)^2} \).

Now fix another real value \(t_1 \geq t_0 \). Denote by \(L \) the length of the arc from \(t_0 \) to \(t_1 \). We can calculate \(L \) as follows:

\[
L = \int_{t_0}^{t_1} ds = \int_{t_0}^{t_1} \frac{ds}{dt} dt = \int_{t_0}^{t_1} \sqrt{\sum_{i=1}^{d} \left(\frac{d(x_i(t))}{dt} \right)^2} dt.
\]
Example 1. Consider the circle \(x^2 + y^2 = 1 \). Let \(p \) be the point \((1, 0)\) and \(q \) the point \((-1, 0)\). Let \(C \) be the arc of the circle from \(p \) to \(q \). How to calculate the length of \(C \)?

First of all, we need to represent the circle using a single parameter. One way of doing so is to define:

\[
\begin{align*}
 x(t) &= \cos(t) \\
 y(t) &= \sin(t).
\end{align*}
\]

Then \(C \) is essentially the curve from \(t = 0 \) (point \(p \)) to \(t = \pi \) (point \(q \)). Hence, the length of \(C \) is given by:

\[
\begin{align*}
 \int_0^\pi ds dt &= \int_0^\pi \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \\
 &= \int_0^\pi \sqrt{(-\sin(t))^2 + (\cos(t))^2} dt \\
 &= \int_0^\pi 1 dt = \pi.
\end{align*}
\]

Example 2. Consider the helix \(\mathbf{r}(t) = [x(t), y(t), z(t)] \) where

\[
\begin{align*}
 x(t) &= \cos(t) \\
 y(t) &= \sin(t) \\
 z(t) &= t.
\end{align*}
\]

The length of the arc from \(t = 0 \) to \(t = \pi \) is:

\[
\begin{align*}
 \int_0^\pi \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt &= \int_0^\pi \sqrt{(-\sin(t))^2 + (\cos(t))^2 + 1^2} dt \\
 &= \sqrt{2} \int_0^\pi dt \\
 &= \sqrt{2} \pi.
\end{align*}
\]

\[\square\]