# Lecture Notes: Arc Lengths 

Yufei Tao<br>Department of Computer Science and Engineering<br>Chinese University of Hong Kong<br>taoyf@cse.cuhk.edu.hk

## 1 Definition of Arc Lengths

Recall that a curve in $\mathbb{R}^{d}$ can be represented as a vector function $\boldsymbol{r}(t)=\left[x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right]$, where $x_{1}(t), x_{2}(t), \ldots, x_{d}(t)$ give the coordinates of the point on the curve corresponding to a value of $t$. If we take a continuous portion of the curve, we get an arc, which is formally defined as:
Definition 1. Given a curve $\boldsymbol{r}(t)$, an $\operatorname{arc}$ of the curve is $\left\{\boldsymbol{r}(t) \mid t_{0} \leq t \leq t_{1}\right\}$ where $t_{0}$ and $t_{1}$ are real values.

It is worth mentioning that the arc as defined above is sometimes also referred to as "the curve from $t_{0}$ to $t_{1}$ " or as "the curve from point $\boldsymbol{r}\left(t_{0}\right)$ to point $\boldsymbol{r}\left(t_{1}\right)$ ". In the example below, the curve/arc from $t_{0}$ to $t_{1}$ is the part of the curve between $p$ and $q$.


Intuitively, an arc should have a "length", which we formalize below as a limit:
Definition 2. Let $C$ be an arc given by $\boldsymbol{r}(t)$ with $t$ ranging from $t_{0}$ to $t_{1}$. Evenly divide the interval $\left[t_{0}, t_{1}\right]$ by inserting $n+1$ break points $\tau_{0}, \tau_{1}, \tau_{2}, \ldots, \tau_{n}$ where $\tau_{0}=t_{0}$ and $\tau_{i}-\tau_{i-1}=\left(t_{1}-t_{0}\right) / n$ for each $i \in[1, n]$. Define $\sigma_{i}$ to be the straight line segment connecting the points $\boldsymbol{r}\left(\tau_{i-1}\right)$ and $\boldsymbol{r}\left(\tau_{i}\right)$, and denote by $\left|\sigma_{i}\right|$ the length of $\sigma_{i}$. Then, if the following limit exists:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|\sigma_{i}\right| \tag{1}
\end{equation*}
$$

we say that the limit is the length of $C$.


The figure above shows an example with $n=5$. Note how we approximate the length of the curve by the total length of a sequence of segments.

In this course, we will be interested mainly in smooth curves. Intuitively, these are curves that (i) do not degenerate into a point, and (ii) do not have "corners" (e.g., the boundary of a triangle is not smooth). Mathematically, we formalize the notion as follows:
Definition 3. Let $C$ be a curve given by $\boldsymbol{r}(t)$ with $t$ ranging from $t_{0}$ to $t_{1}$. $C$ is smooth if (i) $\boldsymbol{r}^{\prime}(t)$ is continuous in $\left[t_{0}, t_{1}\right]$, and (ii) $\boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$ at any $t \in\left[t_{0}, t_{1}\right]$.

We will state without proof the following lemma:
Lemma 1. Let $C$ be as described in Definition 2. If $C$ is smooth, then the limit (1) always exists.

## 2 Computing Arc Lengths

Consider a curve given by the vector function $\boldsymbol{r}(t)$. Fix a real value $t_{0}$, and consider the arc $C$ from $t_{0}$ to $t$. Note that $C$ extends as $t$ grows, which means that the length $s$ of $C$ is a function of $t$.

The following is an important lemma:
Lemma 2. If $C$ is smooth, then it holds that:

$$
\frac{d(s(t))}{d t}=\sqrt{\sum_{i=1}^{d}\left(\frac{d\left(x_{i}(t)\right)}{d t}\right)^{2}} .
$$

We will not present a complete proof of the lemma, but the following discussion will point out the main ideas. Consider the figure below in 2d space. Imagine that we increase $t$ by a tiny amount $\Delta t$. By doing so, we have traveled on the curve a little from point $p$ to point $q$. $\Delta x_{1}$ and $\Delta x_{2}$ give the coordinate differences of $p$ and $q$ on the two dimensions, respectively. When $\Delta t$ is extremely small, the length $\Delta s$ of the curve from $p$ to $q$ should be very close to the length of the segment connecting $p$ and $q$, that is, $\Delta s \approx \sqrt{\left(\Delta x_{1}\right)^{2}+\left(\Delta x_{2}\right)^{2}}$, which gives $\frac{\Delta s}{\Delta t} \approx \sqrt{\left(\frac{\Delta x_{1}}{\Delta t}\right)^{2}+\left(\frac{\Delta x_{2}}{\Delta t}\right)^{2}}$.


Now fix another real value $t_{1} \geq t_{0}$. Denote by $L$ the length of the arc from $t_{0}$ to $t_{1}$. We can calculate $L$ as follows:

$$
\begin{aligned}
L & =\int_{0}^{L} d s \\
& =\int_{t_{0}}^{t_{1}} \frac{d s}{d t} d t \\
& =\int_{t_{0}}^{t_{1}} \sqrt{\sum_{i=1}^{d}\left(\frac{d\left(x_{i}(t)\right)}{d t}\right)^{2}} d t .
\end{aligned}
$$

Example 1. Consider the circle $x^{2}+y^{2}=1$. Let $p$ be the point $(1,0)$ and $q$ the point $(-1,0)$. Let $C$ be the arc of the circle from $p$ to $q$. How to calculate the length of $C$ ?

First of all, we need to represent the circle using a single parameter. One way of doing so is to define:

$$
\begin{aligned}
& x(t)=\cos (t) \\
& y(t)=\sin (t)
\end{aligned}
$$

Then $C$ is essentially the curve from $t=0$ (point $p$ ) to $t=\pi$ (point $q$ ). Hence, the length of $C$ is given by:

$$
\begin{aligned}
\int_{0}^{\pi} \frac{d s}{d t} d t & =\int_{0}^{\pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{\pi} \sqrt{(-\sin (t))^{2}+(\cos (t))^{2}} d t \\
& =\int_{0}^{\pi} 1 d t=\pi
\end{aligned}
$$

Example 2. Consider the helix $\boldsymbol{r}(t)=[x(t), y(t), z(t)]$ where

$$
\begin{aligned}
x(t) & =\cos (t) \\
y(t) & =\sin (t) \\
z(t) & =t
\end{aligned}
$$

The length of the arc from $t=0$ to $t=\pi$ is:

$$
\begin{aligned}
\int_{0}^{\pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t & =\int_{0}^{\pi} \sqrt{(-\sin (t))^{2}+(\cos (t))^{2}+1^{2}} d t \\
& =\sqrt{2} \int_{0}^{\pi} d t \\
& =\sqrt{2} \pi
\end{aligned}
$$

