Exercises: Tangent and Gradient

Problem 1. Let $\boldsymbol{f}(t)=[3,4]+t[1,2]$. Give a tangent vector of the curve at the point corresponding to $\boldsymbol{f}(2)$.

Problem 2. Let $\boldsymbol{f}(t)=\left[\sin (t), \cos \left(t^{3}\right), 5 t^{2}\right]$. Give a tangent vector of the curve at the point corresponding to $\boldsymbol{f}(2)$.

Problem 3. Give a tangent vector of point $(2, \sqrt{2})$ on the ellipse $x^{2}+\frac{y^{2}}{2}=5$.
Problem 4. Let $\boldsymbol{f}(t)=\left[t^{2},-2 t,-t^{3}\right]$. Give a tangent vector of the curve at point $(9,-6,-27)$.
Problem 5. Compute the following gradients:

- $\nabla f(3,4)$ where $f(x, y)=(4 x+3)(2 y-1)$.
- $\nabla f(3,4,5)$ where $f(x, y, z)=3 x^{2} y z$.

Problem 6. Let $g(x, y)=(f(x, y))^{c}$. Prove that $\nabla g(x, y)=c(f(x, y))^{c-1} \nabla f(x, y)$.
Problem 7. Let $f(x, y, z)=3 x^{2} y z$. Let $\boldsymbol{u}=[1 / 3,1 / 3,1 / 3]$. Compute directional derivative of $f(x, y, z)$ in the direction of \boldsymbol{u} at point (5,2,3).

Problem 8. Let $f(x, y, z)=3 x^{2} y z$. Find the unit vector \boldsymbol{u} that maximizes the directional derivative of $f(x, y, z)$ in the direction of \boldsymbol{u} at point $(5,2,3)$.

