Exercises: Tangent and Gradient

Problem 1. Let $\boldsymbol{f}(t)=[3,4]+t[1,2]$. Give a tangent vector of the curve at the point corresponding to $\boldsymbol{f}(2)$.

Solution. We know that $\boldsymbol{f}(t)=[3+t, 4+2 t]$. Taking the derivative gives $\boldsymbol{f}^{\prime}(t)=[1,2]$. Hence, $[1,2]$ is a tangent vector at the point correspond to $\boldsymbol{f}(2)$.

Problem 2. Let $\boldsymbol{f}(t)=\left[\sin (t), \cos \left(t^{3}\right), 5 t^{2}\right]$. Give a tangent vector of the curve at the point corresponding to $\boldsymbol{f}(2)$.

Solution. Since $\boldsymbol{f}^{\prime}(t)=\left[\cos (t),-3 t^{2} \sin \left(t^{3}\right), 10 t\right]$, a tangent vector at the point corresponding to $\boldsymbol{f}(2)$ is $\boldsymbol{f}^{\prime}(2)=[\cos (2),-12 \sin (8), 20]$.

Problem 3. Give a tangent vector of point $(2, \sqrt{2})$ on the ellipse $x^{2}+\frac{y^{2}}{2}=5$.
Solution. Introduce $x(t)=\sqrt{5} \cos (t)$ and $y(t)=\sqrt{10} \sin (t)$. Hence, the curve can be described by $\boldsymbol{f}(t)=[x(t), y(t)]$. We thus have: $\boldsymbol{f}^{\prime}(t)=[-\sqrt{5} \sin (t), \sqrt{10} \cos (t)]$. Point $(2, \sqrt{2})$ corresponds to $\boldsymbol{f}\left(t_{0}\right)$ with $\sqrt{5} \cos \left(t_{0}\right)=2$ and $\sqrt{10} \sin \left(t_{0}\right)=\sqrt{2}$. Hence, a tangent vector at the point is $\boldsymbol{f}^{\prime}\left(t_{0}\right)=\left[-\sqrt{5} \sin \left(t_{0}\right), \sqrt{10} \cos \left(t_{0}\right)\right]=[-1,2 \sqrt{2}]$.

Problem 4. Let $\boldsymbol{f}(t)=\left[t^{2},-2 t,-t^{3}\right]$. Give a tangent vector of the curve at point $(9,-6,-27)$.
Solution. First, we get $\boldsymbol{f}^{\prime}(t)=\left[2 t,-2,-3 t^{2}\right]$. Note that point $(9,-6,-27)$ corresponds to $\boldsymbol{f}(3)$. Hence, a tangent vector at the point is $\boldsymbol{f}^{\prime}(3)=[6,-2,-27]$.

Problem 5. Compute the following gradients:

1. $\nabla f(3,4)$ where $f(x, y)=(4 x+3)(2 y-1)$.
2. $\nabla f(3,4,5)$ where $f(x, y, z)=3 x^{2} y z$.

Solution.

- $\nabla f(x, y)=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]=[4(2 y-1), 2(4 x+3)]$. Hence, $\nabla f(x, y)=[28,30]$.
- $\nabla f(x, y, z)=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]=\left[6 x y z, 3 x^{2} z, 3 x^{2} y\right]$. Hence, $\nabla f(3,4,5)=[360,135,108]$.

Problem 6. Let $g(x, y)=(f(x, y))^{c}$. Prove that $\nabla g(x, y)=c(f(x, y))^{c-1} \nabla f(x, y)$.
Proof. $\quad \nabla g(x, y)=\left[\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right]=\left[c(f(x, y))^{c-1} \frac{\partial f}{\partial x}, c(f(x, y))^{c-1} \frac{\partial f}{\partial y}\right]=c(f(x, y))^{c-1}\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]=$ $c(f(x, y))^{c-1} \nabla f(x, y)$.

Problem 7. Let $f(x, y, z)=3 x^{2} y z$. Let $\boldsymbol{u}=[1 / 3,1 / 3,1 / 3]$. Compute directional derivative of $f(x, y, z)$ in the direction of \boldsymbol{u} at point (5,2,3).

Solution. $\nabla f(x, y, z)=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]=\left[6 x y z, 3 x^{2} z, 3 x^{2} y\right]$. Let us normalize \boldsymbol{u} into $\boldsymbol{v}=\frac{\boldsymbol{u}}{|\boldsymbol{u}|}=$ $\frac{[1 / 3,1 / 3,1 / 3]}{\sqrt{3} / 3}=[1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3}]$. Hence, the directional derivative of $f(5,2,3)$ towards the direction of \boldsymbol{v} (namely, of \boldsymbol{u}) is $\nabla f(5,2,3) \cdot \boldsymbol{v}=[180,225,150] \cdot[1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3}]=555 / \sqrt{3}$.

Problem 8. Let $f(x, y, z)=3 x^{2} y z$. Find the unit vector \boldsymbol{u} that maximizes the directional derivative of $f(x, y, z)$ in the direction of \boldsymbol{u} at point $(5,2,3)$.

Solution. As explained earlier, $\nabla f(5,2,3)=[180,225,150]$. Hence, the directional derivative of $f(5,2,3)$ is maximized in direction of the unit vector $\boldsymbol{u}=\frac{[180,225,150]}{[180,225,150]}=\frac{[180,225,150]}{\sqrt{4221}}$.

