Exercises: Surfaces

Problem 1. Consider the sphere $(x-1)^{2}+(y-2)^{2}+z^{2}=6$.

1. Give a normal vector of the sphere at point $(2,2+\sqrt{2}, \sqrt{3})$.
2. Give the equation of the tangent plane at point $(2,2+\sqrt{2}, \sqrt{3})$.

Problem 2. As before, consider the sphere $(x-1)^{2}+(y-2)^{2}+z^{2}=6$.

1. Let C_{1} be the curve on the sphere satisfying $x=2$. Give a tangent vector \boldsymbol{v}_{1} of C_{1} at point $(2,2+\sqrt{2}, \sqrt{3})$.
2. Let C_{2} be the curve on the sphere satisfying $y=2+\sqrt{2}$. Give a tangent vector \boldsymbol{v}_{2} of C_{2} at point $(2,2+\sqrt{2}, \sqrt{3})$.
3. Compute $\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}$.

Problem 3. Sphere $(x-1)^{2}+(y-2)^{2}+z^{2}=6$ can also be represented in the parametric form:

$$
\begin{aligned}
x(u, v) & =1+\sqrt{6} \cos (u) \\
y(u, v) & =2+\sqrt{6} \sin (u) \cos (v) \\
z(u, v) & =\sqrt{6} \sin (u) \sin (v)
\end{aligned}
$$

By fixing v to the value satisfying $\cos (v)=\sqrt{2 / 5}$ and $\sin (v)=\sqrt{3 / 5}$, from the above we get a curve C on the sphere that passes point $p=(2,2+\sqrt{2}, \sqrt{3})$. Give a tangent vector of C at the point.

Problem 4. This problem is designed to show you how to use gradient to compute the normal vector of a tangle line in 2 d space. Consider the circle $(x-1)^{2}+(y-2)^{2}=5$. Give a vector whose direction is perpendicular to the tangent line of the circle at point $(2,4)$.

