Exercises: Surfaces

Problem 1. Consider the sphere $(x-1)^{2}+(y-2)^{2}+z^{2}=6$.

1. Give a normal vector of the sphere at point $(2,2+\sqrt{2}, \sqrt{3})$.
2. Give the equation of the tangent plane at point $(2,2+\sqrt{2}, \sqrt{3})$.

Solution:

1. Define $f(x, y, z)=(x-1)^{2}+(y-2)^{2}+z^{2}-6$. Its gradient is

$$
\begin{aligned}
\nabla f(x, y, z) & =\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right] \\
& =[2(x-1), 2(y-2), 2 z]
\end{aligned}
$$

Hence, $\nabla f(2,2+\sqrt{2}, \sqrt{3})=[2,2 \sqrt{2}, 2 \sqrt{3}]$ is a normal vector at point $(2,2+\sqrt{2}, \sqrt{3})$.
2. At this stage, you should be able to write out the equation of the plane directly (by resorting to dot product):

$$
2(x-2)+2 \sqrt{2}(y-2-\sqrt{2})+2 \sqrt{3}(z-\sqrt{3})=0 .
$$

Problem 2. As before, consider the sphere $(x-1)^{2}+(y-2)^{2}+z^{2}=6$.

1. Let C_{1} be the curve on the sphere satisfying $x=2$. Give a tangent vector \boldsymbol{v}_{1} of C_{1} at point $(2,2+\sqrt{2}, \sqrt{3})$.
2. Let C_{2} be the curve on the sphere satisfying $y=2+\sqrt{2}$. Give a tangent vector \boldsymbol{v}_{2} of C_{2} at point $(2,2+\sqrt{2}, \sqrt{3})$.
3. Compute $\boldsymbol{v}_{1} \times \boldsymbol{v}_{2}$.

Solution:

1. Let C_{1}^{\prime} be the part of C_{1} satisfying $z \geq 0$. Let us write C_{1}^{\prime} into its parametric form $\boldsymbol{r}(t)=$ $[x(t), y(t), z(t)]$.

$$
\begin{aligned}
x(t) & =2 \\
y(t) & =t \\
z(t) & =\sqrt{5-(t-2)^{2}} .
\end{aligned}
$$

Hence, $\boldsymbol{r}^{\prime}(t)=\left[0,1, \frac{2-t}{\sqrt{5-(t-2)^{2}}}\right]$. Point $(2,2+\sqrt{2}, \sqrt{3})$ is given by $t=2+\sqrt{2}$. Hence, a tangent vector is $\boldsymbol{r}^{\prime}(2+\sqrt{2})=[0,1,-\sqrt{2 / 3}]$.
2. Let C_{2}^{\prime} be the part of C_{2} satisfying $z \geq 0$. Let us write C_{2}^{\prime} into its parametric form $\boldsymbol{r}(t)=$ $[x(t), y(t), z(t)]$.

$$
\begin{aligned}
x(t) & =t \\
y(t) & =2+\sqrt{2} \\
z(t) & =\sqrt{4-(t-1)^{2}} .
\end{aligned}
$$

Hence, $\boldsymbol{r}^{\prime}(t)=\left[1,0, \frac{1-t}{\sqrt{4-(t-1)^{2}}}\right]$. Point $(2,2+\sqrt{2}, \sqrt{3})$ is given by $t=2$. Hence, a tangent vector is $\boldsymbol{r}^{\prime}(2+\sqrt{2})=[1,0,-\sqrt{1 / 3}]$.
3.

$$
[0,1,-\sqrt{2 / 3}] \times[1,0,-\sqrt{1 / 3}]=[-\sqrt{1 / 3},-\sqrt{2 / 3},-1]
$$

By the geometric property of cross product, this is another normal vector to the sphere at $(2,2+\sqrt{2}, \sqrt{3})$.

Problem 3. Sphere $(x-1)^{2}+(y-2)^{2}+z^{2}=6$ can also be represented in the parametric form:

$$
\begin{aligned}
& x(u, v)=1+\sqrt{6} \cos (u) \\
& y(u, v)=2+\sqrt{6} \sin (u) \cos (v) \\
& z(u, v)=\sqrt{6} \sin (u) \sin (v)
\end{aligned}
$$

By fixing v to the value satisfying $\cos (v)=\sqrt{2 / 5}$ and $\sin (v)=\sqrt{3 / 5}$, from the above we get a curve C on the sphere that passes point $p=(2,2+\sqrt{2}, \sqrt{3})$. Give a tangent vector of C at the point.

Solution: C has the parametric form $\boldsymbol{r}(u)=[x(u), y(u), z(u)]$ where:

$$
\begin{aligned}
& x(u)=1+\sqrt{6} \cos (u) \\
& y(u)=2+\sqrt{6} \frac{\sqrt{2}}{\sqrt{5}} \sin (u)=2+\frac{\sqrt{12}}{\sqrt{5}} \sin (u) \\
& z(u)=\sqrt{6} \frac{\sqrt{3}}{\sqrt{5}} \sin (v)=\frac{\sqrt{18}}{\sqrt{5}} \sin (u)
\end{aligned}
$$

Hence, $\boldsymbol{r}^{\prime}(u)=\left[-\sqrt{6} \sin (u), \frac{\sqrt{12}}{\sqrt{5}} \cos (u), \frac{\sqrt{18}}{\sqrt{5}} \cos (u)\right]$.
As C passes point p, we know

$$
\begin{aligned}
1+\sqrt{6} \cos (u) & =2 \\
2+\frac{\sqrt{12}}{\sqrt{5}} \sin (u) & =2+\sqrt{2}
\end{aligned}
$$

giving $\cos (u)=\sqrt{1 / 6}$ and $\sin (u)=\sqrt{5 / 6}$. Hence, at p, a tangent vector is

$$
\begin{aligned}
r^{\prime}(u) & =\left[-\sqrt{6} \sin (u), \frac{\sqrt{12}}{\sqrt{5}} \cos (u), \frac{\sqrt{18}}{\sqrt{5}} \cos (u)\right] \\
& =\left[-\sqrt{6} \frac{\sqrt{5}}{\sqrt{6}}, \frac{\sqrt{12}}{\sqrt{5}} \frac{\sqrt{1}}{\sqrt{6}}, \frac{\sqrt{18}}{\sqrt{5}} \frac{\sqrt{1}}{\sqrt{6}}\right] \\
& =[-\sqrt{5}, \sqrt{2 / 5}, \sqrt{3 / 5}] .
\end{aligned}
$$

Problem 4. This problem is designed to show you how to use gradient to compute the normal vector of a tangle line in 2 d space. Consider the circle $(x-1)^{2}+(y-2)^{2}=5$. Give a vector whose direction is perpendicular to the tangent line of the circle at point $(2,4)$.

Solution: Define $f(x, y)=(x-1)^{2}+(y-2)^{2}-5$. The circle satisfies $f(x, y)=0$.
Let us represent the circle in its parametric form $\boldsymbol{r}(t)=[x(t), y(t)]$. As we will see, we do need to worry about how to formulate $x(t)$ and $y(t)$ at all. It must hold that

$$
f(x(t), y(t))=0
$$

Taking the derivative of both sides with respect to t gives

$$
\begin{aligned}
\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} & =0 \Rightarrow \\
{\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right] \cdot\left[\frac{d x}{d t}, \frac{d y}{d t}\right] } & =0 \Rightarrow \\
\nabla f(x, y) \cdot\left[x^{\prime}(t), y^{\prime}(t)\right] & =0 .
\end{aligned}
$$

Note that $\left[x^{\prime}(t), y^{\prime}(t)\right]$ is a tangent vector of the point $p(x, y)$ on the circle given by t. Hence, as long as $\nabla f(x, y)$ and $\left[x^{\prime}(t), y^{\prime}(t)\right]$ are not $\mathbf{0}, \nabla f(x, y)$ is a vector normal to the tangent vector.

In our problem, $\nabla f(x, y)=[2(x-1), 2(y-2)]$. Hence, $\nabla f(2,4)=[2,4]$ is a solution.

