Exercises: Dot Product and Cross Product

Problem 1. For the following directed segments, give the vectors they define:

1. $\overrightarrow{(1,2),(2,3)}$
2. $\overrightarrow{(10,20),(11,21)}$
3. $\overrightarrow{(1,-2),(2,3)}$
4. $\overrightarrow{(1,-2,0),(2,3,10)}$

Problem 2. In each of the following cases, indicate whether \boldsymbol{a} and \boldsymbol{b} have the same direction (i.e., whether their angle is 0):

1. $\boldsymbol{a}=[1,1], \boldsymbol{b}=[2,2]$
2. $\boldsymbol{a}=[1,2,3], \boldsymbol{b}=[20,40,60]$
3. $\boldsymbol{a}=[1,2,3], \boldsymbol{b}=[2,-4,6]$

Problem 3. Let \boldsymbol{a} and \boldsymbol{b} be 2 d vectors such that $\boldsymbol{a}+\boldsymbol{b}=[3,5]$, and $\boldsymbol{a}-\boldsymbol{b}=[4,6]$. What are \boldsymbol{a} and \boldsymbol{b} ?

Problem 4. Let A, B, C, D be 4 points in \mathbb{R}^{d}. Suppose that directed segments $\overrightarrow{A B}, \overrightarrow{B C}$, and $\overrightarrow{C D}$ define vectors $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}, respectively; see the figure below. Prove that $\overrightarrow{A D}$ is an instantiation of $\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$.

Problem 5. Give the result of $\boldsymbol{a} \times \boldsymbol{b}$ for each of the following:

1. $\boldsymbol{a}=[1,2,3], \boldsymbol{b}=[3,2,1]$.
$\boldsymbol{a}=\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}, \boldsymbol{b}=[3,2,1]$.

Problem 6. In each of the following, you are given two vectors \boldsymbol{a} and \boldsymbol{b}. Give the value of $\cos \gamma$, where γ is the angle between \boldsymbol{a} and \boldsymbol{b}.

1. $\boldsymbol{a}=[1,2], \boldsymbol{b}=[2,5]$
2. $\boldsymbol{a}=[1,2,3], \boldsymbol{b}=[3,2,1]$

Problem 7. This exercise explores the usage of dot product for calculation of projection lengths. Consider points $P(1,2,3), A(2,-1,4), B(3,2,5)$. Let ℓ be the line passing P and A. Now, let us project point B onto ℓ; denote by C the projection. Calculate the distance between P and C.

Problem 8. Let $\overrightarrow{P A}, \overrightarrow{P B}$, and $\overrightarrow{P C}$ be directed segments that are not in the same plane. They determine a parallelepiped as shown below:

Suppose that $\overrightarrow{P A}, \overrightarrow{P B}$, and $\overrightarrow{P C}$ define vectors $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}, respectively. Prove that the volume of the parallelepiped equals $|(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}|$.

Problem 9. Given a point $p(x, y, z)$ in \mathbb{R}^{3}, we use \boldsymbol{p} to denote the corresponding vector $[x, y, z]$. Let q be a point in \mathbb{R}^{3}, and \boldsymbol{v} be a non-zero 3 d vector. Denote by ρ the plane passing q that is perpendicular to the direction of \boldsymbol{v}. Prove that for any p on ρ, it holds that $(\boldsymbol{p}-\boldsymbol{q}) \cdot \boldsymbol{v}=0$.

Problem 10. Given a point $p(x, y, z)$ in \mathbb{R}^{3}, we use \boldsymbol{p} to denote the corresponding vector $[x, y, z]$. Let q be a point in \mathbb{R}^{3}, and \boldsymbol{u} be a unit 3 d vector (i.e., $|\boldsymbol{u}|=1$). Denote by ρ the plane passing q that is perpendicular to the direction of \boldsymbol{u}. Prove that for any p in \mathbb{R}^{3}, its distance to ρ equals $|(\boldsymbol{p}-\boldsymbol{q}) \cdot \boldsymbol{u}|$.

Problem 11. Consider the plane $x+2 y+3 z=4$ in \mathbb{R}^{3}. Calculate the distance from point $(0,0,0)$ to the plane.

