Exercises: Dot Product and Cross Product

Problem 1. For the following directed segments, give the vectors they define:

1. $\overrightarrow{(1,2),(2,3)}$
2. $\overrightarrow{(10,20),(11,21)}$
3. $\overrightarrow{(1,-2),(2,3)}$
4. $\overrightarrow{(1,-2,0),(2,3,10)}$

Solution:

1. $[1,1]$.
2. $[1,1]$
3. $[1,5]$
4. $[1,5,10]$

Problem 2. In each of the following cases, indicate whether \boldsymbol{a} and \boldsymbol{b} have the same direction (i.e., whether their angle is 0):

1. $\boldsymbol{a}=[1,1], \boldsymbol{b}=[2,2]$
2. $\boldsymbol{a}=[1,2,3], \boldsymbol{b}=[20,40,60]$
3. $\boldsymbol{a}=[1,2,3], \boldsymbol{b}=[2,-4,6]$

Solution:

1. Yes
2. Yes
3. No

Problem 3. Let \boldsymbol{a} and \boldsymbol{b} be 2d vectors such that $\boldsymbol{a}+\boldsymbol{b}=[3,5]$, and $\boldsymbol{a}-\boldsymbol{b}=[4,6]$. What are \boldsymbol{a} and \boldsymbol{b} ?

Solution: Since $(\boldsymbol{a}+\boldsymbol{b})+(\boldsymbol{a}-\boldsymbol{b})=2 \boldsymbol{a}=[3,5]+[4,6]=[7,11]$, we know $\boldsymbol{a}=[3.5,5.5]$. From this we get $\boldsymbol{b}=[-0.5,0.5]$.

Problem 4. Let A, B, C, D be 4 points in \mathbb{R}^{d}. Suppose that directed segments $\overrightarrow{A B}, \overrightarrow{B C}$, and $\overrightarrow{C D}$ define vectors $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}, respectively; see the figure below. Prove that $\overrightarrow{A D}$ is an instantiation of $a+b+c$.

Solution: The directed segment $\overrightarrow{A C}$ defines vector $\boldsymbol{d}=\boldsymbol{a}+\boldsymbol{b}$. Hence, $\overrightarrow{A D}$ defines $\boldsymbol{d}+\boldsymbol{c}=\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$.

Problem 5. Give the result of $\boldsymbol{a} \times \boldsymbol{b}$ for each of the following:

1. $\boldsymbol{a}=[1,2,3], \boldsymbol{b}=[3,2,1]$.
2. $\boldsymbol{a}=\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}, \boldsymbol{b}=[3,2,1]$.

Solution:

1. $\boldsymbol{a} \times \boldsymbol{b}=\left[\left|\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right|,-\left|\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right|,\left|\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right|\right]=[-4,8,-4]$.
2. $\boldsymbol{a}=[1,-1,1]$. Then it is easy to obtain that $\boldsymbol{a} \times \boldsymbol{b}=[-3,2,5]$.

Problem 6. In each of the following, you are given two vectors \boldsymbol{a} and \boldsymbol{b}. Give the value of $\cos \gamma$, where γ is the angle between \boldsymbol{a} and \boldsymbol{b}.

1. $\boldsymbol{a}=[1,2], \boldsymbol{b}=[2,5]$
2. $\boldsymbol{a}=[1,2,3], \boldsymbol{b}=[3,2,1]$

Solution:

1. $\cos \gamma=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| \boldsymbol{b} \mid}=\frac{12}{\sqrt{5} \cdot \sqrt{29}}=\frac{12}{\sqrt{145}}$.
2. $\frac{5}{7}$.

Problem 7. This exercise explores the usage of dot product for calculation of projection lengths. Consider points $P(1,2,3), A(2,-1,4), B(3,2,5)$. Let ℓ be the line passing P and A. Now, let us project point B onto ℓ; denote by C the projection. Calculate the distance between P and C.

Solution: Let γ be the angle between vectors $\overrightarrow{P A}$ and $\overrightarrow{P B}$. We have $|\overrightarrow{P C}|=|\overrightarrow{P B}||\cos \gamma|=$ $|\overrightarrow{P B}| \frac{\overrightarrow{P A} \cdot \overrightarrow{P B}}{|\overrightarrow{P A}||\overrightarrow{P B}|}=\frac{\overrightarrow{P A} \cdot \overrightarrow{P B}}{|\overrightarrow{P A}|}$. Given $\overrightarrow{P A}=[1,-3,1]$ and $\overrightarrow{P B}=[2,0,2]$, we know that which equals $\frac{\overrightarrow{P A} \cdot \overrightarrow{P B}}{|\overrightarrow{P A}|}=\frac{4}{\sqrt{11}}$.

Problem 8. Let $\overrightarrow{P A}, \overrightarrow{P B}$, and $\overrightarrow{P C}$ be directed segments that are not in the same plane. They determine a parallelepiped as shown below:

Suppose that $\overrightarrow{P A}, \overrightarrow{P B}$, and $\overrightarrow{P C}$ define vectors $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}, respectively. Prove that the volume of the parallelepiped equals $|(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}|$.

Proof: Let E be the projection of point C onto the plane defined by P, A, B (see the above figure). Denote by $\overline{C E}$ the segment connecting C and E, and by $\overline{C E}$ its length. Clearly, the volume of the parallelepiped equals area $(P A D B) \cdot|\overline{C E}|$. From the notes of Lecture 2, we know that $|\boldsymbol{a} \times \boldsymbol{b}|$ is exactly area $(P A D B)$. So to complete the proof, we need to show:

$$
\begin{align*}
|(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}| & =|\boldsymbol{a} \times \boldsymbol{b}||\overline{C E}| \\
|\boldsymbol{a} \times \boldsymbol{b}||\boldsymbol{c} \| \cos \gamma| & =|\boldsymbol{a} \times \boldsymbol{b}||\overline{C E}| \tag{1}
\end{align*} \Leftrightarrow
$$

where γ is the angle between the directions of $\boldsymbol{a} \times \boldsymbol{b}$ and \boldsymbol{c}. To prove Equation 1, it suffices to prove

$$
|\boldsymbol{c}||\cos \gamma|=|\overline{C E}|
$$

which is true because γ is also the angle between $\overrightarrow{P C}$ and $\overrightarrow{C E}$.
Problem 9. Given a point $p(x, y, z)$ in \mathbb{R}^{3}, we use \boldsymbol{p} to denote the corresponding vector $[x, y, z]$. Let q be a point in \mathbb{R}^{3}, and \boldsymbol{v} be a non-zero 3 d vector. Denote by ρ the plane passing q that is perpendicular to the direction of \boldsymbol{v}. Prove that for any p on ρ, it holds that $(\boldsymbol{p}-\boldsymbol{q}) \cdot \boldsymbol{v}=0$.

Proof: The equation obviously holds if $q=p$. Now consider the case where $q \neq p$, as shown in the above figure. We know that the directions of \boldsymbol{v} and $\boldsymbol{p}-\boldsymbol{q}$ are orthogonal. Therefore, $(\boldsymbol{p}-\boldsymbol{q}) \cdot \boldsymbol{v}=0$.

Problem 10. Given a point $p(x, y, z)$ in \mathbb{R}^{3}, we use \boldsymbol{p} to denote the corresponding vector $[x, y, z]$. Let q be a point in \mathbb{R}^{3}, and \boldsymbol{u} be a unit 3d vector (i.e., $|\boldsymbol{u}|=1$). Denote by ρ the plane passing q that is perpendicular to the direction of \boldsymbol{u}. Prove that for any p in \mathbb{R}^{3}, its distance to ρ equals $|(\boldsymbol{p}-\boldsymbol{q}) \cdot \boldsymbol{u}|$.

Proof: If p falls on ρ, then the equation follows from the result of Problem 6. Otherwise, let s be the projection of p onto ρ. See the above figure. Let γ be the angle between the two segments $\overline{p q}$ and $\overline{p s}$. Hence:

$$
|p s|=|p q||\cos \gamma|
$$

It suffices to prove that

$$
\begin{aligned}
|p q \| \cos \gamma| & =|(\boldsymbol{p}-\boldsymbol{q}) \cdot \boldsymbol{u}| \\
& =|(\boldsymbol{p}-\boldsymbol{q})||\boldsymbol{u} \| \cos \theta|
\end{aligned}
$$

where θ is the angle between the directions of \boldsymbol{u} and $\boldsymbol{p}-\boldsymbol{q}$. The above is true because (i) $|p q|=$ $|(\boldsymbol{p}-\boldsymbol{q})|$ and (ii) either $\theta=\gamma$ or $\theta=180^{\circ}-\gamma$. We thus complete the proof.

Problem 11. Consider the plane $x+2 y+3 z=4$ in \mathbb{R}^{3}. Calculate the distance from point $(0,0,0)$ to the plane.

Solution: We can re-write the plane's equation as

$$
1 \cdot(x-0)+2 \cdot(y-0)+3 \cdot(z-4 / 3)=0 .
$$

Hence, $q(0,0,4 / 3)$ is a point on the plane. Also, we know that the direction of $\boldsymbol{v}=[1,2,3]$ is perpendicular to the plane. Let $\boldsymbol{u}=\frac{\boldsymbol{v}}{|\boldsymbol{v}|}=\left[\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right]$. Note that the direction of \boldsymbol{u} is also perpendicular to the plane, and that $|\boldsymbol{u}|=1$. Therefore, we can now apply the result of the previous problem to compute the distance from $p(0,0,0)$ to the plane as:

$$
\left|([0,0,0]-[0,0,4 / 3]) \cdot\left[\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right]\right|=\left|-\frac{4}{3} \cdot \frac{3}{\sqrt{14}}\right|=\frac{4}{\sqrt{14}}
$$

