
Exercises: Dot Product and Cross Product

Problem 1. For the following directed segments, give the vectors they define:

1.
−−−−−−−→
(1, 2), (2, 3)

2.
−−−−−−−−−−−→
(10, 20), (11, 21)

3.
−−−−−−−−−→
(1,−2), (2, 3)

4.
−−−−−−−−−−−−−→
(1,−2, 0), (2, 3, 10)

Solution:

1. [1, 1].

2. [1, 1]

3. [1, 5]

4. [1, 5, 10]

Problem 2. In each of the following cases, indicate whether a and b have the same direction (i.e.,
whether their angle is 0):

1. a = [1, 1], b = [2, 2]

2. a = [1, 2, 3], b = [20, 40, 60]

3. a = [1, 2, 3], b = [2,−4, 6]

Solution:

1. Yes

2. Yes

3. No

Problem 3. Let a and b be 2d vectors such that a + b = [3, 5], and a − b = [4, 6]. What are a
and b?

Solution: Since (a + b) + (a− b) = 2a = [3, 5] + [4, 6] = [7, 11], we know a = [3.5, 5.5]. From this
we get b = [−0.5, 0.5].
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Problem 4. Let A,B,C,D be 4 points in Rd. Suppose that directed segments
−−→
AB,

−−→
BC, and

−−→
CD

define vectors a, b, and c, respectively; see the figure below. Prove that
−−→
AD is an instantiation of

a + b + c.

ca

A

D

B b
C

Solution: The directed segment
−→
AC defines vector d = a+b. Hence,

−−→
AD defines d+c = a+b+c.

ca

A

D

B b
C

d

Problem 5. Give the result of a× b for each of the following:

1. a = [1, 2, 3], b = [3, 2, 1].

2. a = i− j + k, b = [3, 2, 1].

Solution:

1. a× b =

[∣∣∣∣2 3
2 1

∣∣∣∣ ,− ∣∣∣∣1 3
3 1

∣∣∣∣ , ∣∣∣∣1 2
3 2

∣∣∣∣] = [−4, 8,−4].

2. a = [1,−1, 1]. Then it is easy to obtain that a× b = [−3, 2, 5].

Problem 6. In each of the following, you are given two vectors a and b. Give the value of cos γ,
where γ is the angle between a and b.

1. a = [1, 2], b = [2, 5]

2. a = [1, 2, 3], b = [3, 2, 1]
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Solution:

1. cos γ = a·b
|a||b| = 12√

5·
√
29

= 12√
145

.

2. 5
7 .

Problem 7. This exercise explores the usage of dot product for calculation of projection lengths.
Consider points P (1, 2, 3), A(2,−1, 4), B(3, 2, 5). Let ` be the line passing P and A. Now, let us
project point B onto `; denote by C the projection. Calculate the distance between P and C.

Solution: Let γ be the angle between vectors
−→
PA and

−−→
PB. We have |

−−→
PC| = |

−−→
PB|| cos γ| =

|
−−→
PB|

−→
PA·
−−→
PB

|
−→
PA||

−−→
PB|

=
−→
PA·
−−→
PB

|
−→
PA|

. Given
−→
PA = [1,−3, 1] and

−−→
PB = [2, 0, 2], we know that which equals

−→
PA·
−−→
PB

|
−→
PA|

= 4√
11

.

Problem 8. Let
−→
PA,

−−→
PB, and

−−→
PC be directed segments that are not in the same plane. They

determine a parallelepiped as shown below:

c

a
AP

B

b

C

E

D

Suppose that
−→
PA,

−−→
PB, and

−−→
PC define vectors a, b, and c, respectively. Prove that the volume of

the parallelepiped equals |(a× b) · c|.

Proof: Let E be the projection of point C onto the plane defined by P,A,B (see the above figure).
Denote by CE the segment connecting C and E, and by CE its length. Clearly, the volume of the
parallelepiped equals area(PADB) · |CE|. From the notes of Lecture 2, we know that |a × b| is
exactly area(PADB). So to complete the proof, we need to show:

|(a× b) · c| = |a× b||CE| ⇔
|a× b||c|| cos γ| = |a× b||CE| (1)

where γ is the angle between the directions of a×b and c. To prove Equation 1, it suffices to prove

|c|| cos γ| = |CE|

which is true because γ is also the angle between
−−→
PC and CE.

Problem 9. Given a point p(x, y, z) in R3, we use p to denote the corresponding vector [x, y, z].
Let q be a point in R3, and v be a non-zero 3d vector. Denote by ρ the plane passing q that is
perpendicular to the direction of v. Prove that for any p on ρ, it holds that (p− q) · v = 0.
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q

O

v

p

p − q

Proof: The equation obviously holds if q = p. Now consider the case where q 6= p, as shown
in the above figure. We know that the directions of v and p − q are orthogonal. Therefore,
(p− q) · v = 0.

Problem 10. Given a point p(x, y, z) in R3, we use p to denote the corresponding vector [x, y, z].
Let q be a point in R3, and u be a unit 3d vector (i.e., |u| = 1). Denote by ρ the plane passing
q that is perpendicular to the direction of u. Prove that for any p in R3, its distance to ρ equals
|(p− q) · u|.

q

O

u

p
p − q

s

Proof: If p falls on ρ, then the equation follows from the result of Problem 6. Otherwise, let s be
the projection of p onto ρ. See the above figure. Let γ be the angle between the two segments pq
and ps. Hence:

|ps| = |pq|| cos γ|

It suffices to prove that

|pq|| cos γ| = |(p− q) · u|
= |(p− q)||u|| cos θ|

where θ is the angle between the directions of u and p − q. The above is true because (i) |pq| =
|(p− q)| and (ii) either θ = γ or θ = 180◦ − γ. We thus complete the proof.

Problem 11. Consider the plane x+ 2y+ 3z = 4 in R3. Calculate the distance from point (0, 0, 0)
to the plane.

Solution: We can re-write the plane’s equation as

1 · (x− 0) + 2 · (y − 0) + 3 · (z − 4/3) = 0.
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Hence, q(0, 0, 4/3) is a point on the plane. Also, we know that the direction of v = [1, 2, 3] is
perpendicular to the plane. Let u = v

|v| = [ 1√
14
, 2√

14
, 3√

14
]. Note that the direction of u is also

perpendicular to the plane, and that |u| = 1. Therefore, we can now apply the result of the previous
problem to compute the distance from p(0, 0, 0) to the plane as:∣∣∣∣([0, 0, 0]− [0, 0, 4/3]) · [ 1√

14
,

2√
14
,

3√
14

]

∣∣∣∣ =

∣∣∣∣−4

3
· 3√

14

∣∣∣∣ =
4√
14
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