Exercises: Vector Derivative

Problem 1. Solve the following limits:

- 1. $\lim_{t\to 3} f(t)$, where $f(t) = [5t+3, \frac{\sin(t-3)}{t-3}]$.
- 2. $\lim_{t\to 0} \mathbf{f}(t)$, where $\mathbf{f}(t) = [5t^2 + 3t, t^2, \frac{e^t 1}{t}]$.
- 3. $\lim_{t\to 0} \boldsymbol{f}(t)$, where

$$\mathbf{f}(t) = \begin{cases} [5t^2 + 3t, t^2, \frac{e^t - 1}{t}] & \text{if } t \neq 0\\ [10, 10, 10] & \text{otherwise} \end{cases}$$

Problem 2. Discuss the continuity of f(t) at t = 0.

1.
$$\mathbf{f}(t) = [5t^2 + 3t, t^2, \frac{e^t - 1}{t}].$$

2. $\mathbf{f}(t) = [5t^2 + 3t, t^2, \frac{e^t - 1}{t}]$ if $t \neq 0$; otherwise, $\mathbf{f}(t) = [10, 10, 10]$
3. $\mathbf{f}(t) = [5t^2 + 3t, t^2, \frac{e^t - 1}{t}]$ if $t \neq 0$; otherwise, $\mathbf{f}(t) = [0, 0, 1].$

Problem 4. Suppose that $f(t) = [\sin(t), \cos(t^3), 5t^2]$. Answer the following questions:

- 1. Give the function f'(t).
- 2. Give the function f''(t) (which is the derivative of f'(t)).
- 3. Give the function f'''(1) (where f'''(t) is the derivative of f''(t)).

Problem 5. Suppose that $\boldsymbol{f}(t) = [t^2, \sin(t), 2t]$ and $\boldsymbol{g}(t) = 2t\boldsymbol{i} + \frac{1}{\sin(t)}\boldsymbol{j} + 3t^2\boldsymbol{k}$.

- 1. Give the function $h(t) = \mathbf{f}(t) \cdot \mathbf{g}(t)$.
- 2. Give the function h'(t).
- 3. Give the function f'(t) and g'(t).
- 4. Verify that $h'(t) = \mathbf{f}'(t) \cdot \mathbf{g}(t) + \mathbf{g}'(t) \cdot \mathbf{f}(t)$.

Problem 6. Suppose that $f(t) = [t, t^2, 1]$ and $g(t) = [1, t, t^2]$.

- 1. Give the function $\boldsymbol{h}(t) = \boldsymbol{f}(t) \times \boldsymbol{g}(t)$.
- 2. Give the function h'(t).
- 3. Verify that $\boldsymbol{h}'(t) = \boldsymbol{f}'(t) \times \boldsymbol{g}(t) + \boldsymbol{f}(t) \times \boldsymbol{g}'(t)$.