Exercises: Vector Derivative

Problem 1. Solve the following limits:

- 1. $\lim_{t\to 3} \mathbf{f}(t)$, where $\mathbf{f}(t) = [5t+3, \frac{\sin(t-3)}{t-3}]$.
- 2. $\lim_{t\to 0} \mathbf{f}(t)$, where $\mathbf{f}(t) = [5t^2 + 3t, t^2, \frac{e^t 1}{t}]$.
- 3. $\lim_{t\to 0} f(t)$, where

$$\mathbf{f}(t) = \begin{cases} [5t^2 + 3t, t^2, \frac{e^t - 1}{t}] & \text{if } t \neq 0\\ [10, 10, 10] & \text{otherwise} \end{cases}$$

Solution.

- 1. Since $\lim_{t\to 3} (5t+3) = 18$ and $\lim_{t\to 3} \frac{\sin(t-3)}{t-3} = 1$, we know that $\lim_{t\to 3} f(t) = [18, 1]$.
- 2. $\lim_{t\to 0} \mathbf{f}(t) = [0, 0, 1].$
- 3. $\lim_{t\to 0} \mathbf{f}(t) = [0, 0, 1]$. Note that f(0) is irrelevant to the limit.

Problem 2. Discuss the continuity of f(t) at t = 0.

1.
$$\mathbf{f}(t) = [5t^2 + 3t, t^2, \frac{e^t - 1}{t}].$$

2. $\mathbf{f}(t) = [5t^2 + 3t, t^2, \frac{e^t - 1}{t}]$ if $t \neq 0$; otherwise, $\mathbf{f}(t) = [10, 10, 10].$
3. $\mathbf{f}(t) = [5t^2 + 3t, t^2, \frac{e^t - 1}{t}]$ if $t \neq 0$; otherwise, $\mathbf{f}(t) = [0, 0, 1].$

Solution.

- 1. No. The function is not defined at t = 0.
- 2. No because $\lim_{t\to 0} f(t) = [0, 0, 1] \neq f(0)$.
- 3. Yes because $\lim_{t\to 0} f(t) = [0, 0, 1] = f(0)$.

Problem 4. Suppose that $f(t) = [\sin(t), \cos(t^3), 5t^2]$. Answer the following questions:

- 1. Give the function f'(t).
- 2. Give the function f''(t) (which is the derivative of f'(t)).
- 3. Give the function f'''(1) (where f'''(t) is the derivative of f''(t)).

Solution.

1. To compute f'(t), simply take the derivative of each component function of f(t). We thus obtain $f'(t) = [\cos(t), -3t^2\sin(t^3), 10t]$.

- 2. To compute f''(t), simply take the derivative of each component function of f'(t). We thus obtain $f''(t) = [-\sin(t), -6t\sin(t^3) 9t^4\cos(t^3), 10]$.
- 3. To compute f'''(t), simply take the derivative of each component function of f''(t). Doing so and then plugging in t = 1 gives $f'''(1) = [-\cos(1), -54\cos(1) + 21\sin(1), 0]$.

Problem 5. Suppose that $\boldsymbol{f}(t) = [t^2, \sin(t), 2t]$ and $\boldsymbol{g}(t) = 2t\boldsymbol{i} + \frac{1}{\sin(t)}\boldsymbol{j} + 3t^2\boldsymbol{k}$.

- 1. Give the function $h(t) = \mathbf{f}(t) \cdot \mathbf{g}(t)$.
- 2. Give the function h'(t).
- 3. Give the function f'(t) and g'(t).
- 4. Verify that $h'(t) = \mathbf{f}'(t) \cdot \mathbf{g}(t) + \mathbf{g}'(t) \cdot \mathbf{f}(t)$.

Solution.

- 1. $h(t) = t^2 \cdot 2t + \sin(t) \frac{1}{\sin(t)} + 2t \cdot 3t^2 = 8t^3 + 1.$ 2. $h'(t) = 24t^2.$
- 3. $\mathbf{f}'(t) = [2t, \cos(t), 2]$ and $\mathbf{g}'(t) = [2, -\frac{\cos(t)}{\sin^2(t)}, 6t].$
- 4.

$$\mathbf{f}'(t) \cdot \mathbf{g}(t) + \mathbf{g}'(t) \cdot \mathbf{f}(t) = 2t \cdot 2t + \frac{\cos(t)}{\sin(t)} + 2 \cdot 3t^2 + 2 \cdot t^2 - \sin(t)\frac{\cos(t)}{\sin^2(t)} + 2t \cdot 6t$$

= 24t²

Problem 6. Suppose that $f(t) = [t, t^2, 1]$ and $g(t) = [1, t, t^2]$.

- 1. Give the function $\boldsymbol{h}(t) = \boldsymbol{f}(t) \times \boldsymbol{g}(t)$.
- 2. Give the function h'(t).
- 3. Verify that $\boldsymbol{h}'(t) = \boldsymbol{f}'(t) \times \boldsymbol{g}(t) + \boldsymbol{f}(t) \times \boldsymbol{g}'(t)$.

Solution.

1. h(t) = [x(t), y(t), z(t)] where

$$\begin{aligned} x(t) &= t^2 \cdot t^2 - 1 \cdot t = t^4 - t \\ y(t) &= 1 \cdot 1 - t \cdot t^2 = 1 - t^3 \\ z(t) &= t \cdot t - t^2 \cdot 1 = 0 \end{aligned}$$

- 2. $\mathbf{h}'(t) = [4t^3 1, -3t^2, 0].$
- 3. $\mathbf{f}'(t) = [1, 2t, 0]$ and $\mathbf{g}'(t) = [0, 1, 2t]$. Hence $\mathbf{f}'(t) \times \mathbf{g}(t) = [2t^3, -t^2, -t]$ and $\mathbf{f}(t) \times \mathbf{g}'(t) = [2t^3 - 1, -2t^2, t]$. This gives $\mathbf{f}'(t) \times \mathbf{g}(t) + \mathbf{f}(t) \times \mathbf{g}'(t) = [4t^3 - 1, -3t^2, 0]$.