Exercises: Dimensions, Spans, and Linear Transformations

In the following exercises, \mathbb{R} denotes the set of all real numbers.
Problem 1. Let V be the set of following 1×4 vectors:

$$
\begin{aligned}
& {[3,0,1,2]} \\
& {[6,1,0,0]} \\
& {[12,1,2,4]} \\
& {[6,0,2,4]} \\
& {[9,0,1,2]}
\end{aligned}
$$

Find the dimension of V.
Problem 2. Let V be the set of 1×4 vectors $[2 x-3 y, x+2 y,-y, 4 x]$ with $x, y \in \mathbb{R}$. Find the dimension of V and give a basis of V.

Problem 3. For each set V of vectors given below, find its dimension and give a basis:

- (a) V is the set of 2 D points given by $y=x$ (here, we regard each point (x, y) as a 1×2 vector $[x, y]$);
- (b) V is the set of 2D points given by $y=x+1$.

Problem 4. Let V_{1} be the set of vectors $\left[x_{1}, x_{2}\right]^{T}$ where $x_{1} \in \mathbb{R}$ and $x_{2} \in \mathbb{R}$. Define:

$$
\begin{aligned}
y_{1} & =3 x_{1}+2 x_{2} \\
y_{2} & =4 x_{1}+x_{2}
\end{aligned}
$$

Let V_{2} be the set of vectors $\left[y_{1}, y_{2}\right]^{T}$ obtained by applying the above to all vectors $\left[x_{1}, x_{2}\right]^{T} \in V_{1}$. Answer the following questions:
(a) Give the matrix \boldsymbol{A} in the linear transformation $\left[y_{1}, y_{2}\right]^{T}=\boldsymbol{A}\left[x_{1}, x_{2}\right]^{T}$ from V_{1} to V_{2}.
(b) It is known that there is a linear transformation $\left[x_{1}, x_{2}\right]^{T}=\boldsymbol{A}^{\prime}\left[y_{1}, y_{2}\right]^{T}$ from V_{2} to V_{1}. Give the details of the matrix \boldsymbol{A}^{\prime}.

Problem 5. Let V be a set of $1 \times n$ vectors. Let V^{\prime} be the projection of V on the first $t<n$ components, namely:

$$
V^{\prime}=\left\{\left[x_{1}, x_{2}, \ldots, x_{t}\right] \mid\left[x_{1}, x_{2}, \ldots, x_{t}, x_{t+1}, \ldots, x_{n}\right] \in V\right\} .
$$

Prove: the dimension of V is at least the dimension of V^{\prime}.
For example, if V is the set of 5 vectors in Problem 1 and $t=2$, then V^{\prime} is the set of following vectors:

$$
\begin{aligned}
& {[3,0]} \\
& {[6,1]} \\
& {[12,1]} \\
& {[6,0]} \\
& {[9,0] .}
\end{aligned}
$$

Problem 6 (Hard). Consider the following system of linear equations:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 2 \\
0 & 1 & 1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Let V be the set of 5×1 vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ that satisfy the equation. Prove that V has dimension 2, and find a basis of V.

Problem 7 (Hard). Consider the following linear system about \boldsymbol{x}

$$
\boldsymbol{A x}=\mathbf{0}
$$

where \boldsymbol{A} is an $m \times n$ coefficient matrix, and \boldsymbol{x} an $n \times 1$ matrix. Let V be the set of all such \boldsymbol{x} satisfying the system. Suppose that the rank of \boldsymbol{A} is $r<n$. Prove that V has dimension $n-r$.

