
Exercises: Dimensions, Spans, and Linear Transformations

In the following exercises, R denotes the set of all real numbers.

Problem 1. Let V be the set of following 1× 4 vectors:

[3, 0, 1, 2]

[6, 1, 0, 0]

[12, 1, 2, 4]

[6, 0, 2, 4]

[9, 0, 1, 2]

Find the dimension of V .

Solution. Since the matrix 
3 0 1 2
6 1 0 0
12 1 2 4
6 0 2 4
9 0 1 2


has rank 2 (see the exercise list on “Matrix Rank”), the dimension of V is 2.

Problem 2. Let V be the set of 1 × 4 vectors [2x − 3y, x + 2y,−y, 4x] with x, y ∈ R. Find the
dimension of V and give a basis of V .

Solution. Denote by V ′ the set of 1×2 vectors [x, y] with x, y ∈ R. V is obtained from V ′ through
a linear transformation. Clearly the dimension of V ′ is 2 (here is a basis for V ′: {[1, 0], [0, 1]}).
Thus, the dimension of V is at most 2. To prove that the dimension of V is exactly 2, it suffices to
find two vectors in V that are linearly independent. The following are two such vectors: [2, 1, 0, 4]
(given by x = 1, y = 0) and [−3, 2,−1, 0] (given by x = 0, y = 1). They also form a basis of V .

Problem 3. For each set V of vectors given below, find its dimension and give a basis:

• (a) V is the set of 2D points given by y = x (here, we regard each point (x, y) as a 1 × 2
vector [x, y]);

• (b) V is the set of 2D points given by y = x + 1.

Solution. (a) Dimension 1. A basis: {[1, 1]}.
(b) Dimension 2. A basis: {[0, 1], [−1, 0]}.

Problem 4. Let V1 be the set of vectors [x1, x2]
T where x1 ∈ R and x2 ∈ R. Define:

y1 = 3x1 + 2x2

y2 = 4x1 + x2

Let V2 be the set of vectors [y1, y2]
T obtained by applying the above to all vectors [x1, x2]

T ∈ V1.
Answer the following questions:
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(a) Give the matrix A in the linear transformation [y1, y2]
T = A[x1, x2]

T from V1 to V2.

(b) It is known that there is a linear transformation [x1, x2]
T = A′[y1, y2]

T from V2 to V1. Give
the details of the matrix A′.

Solution. (a) The transformation can be written as:[
y1
y2

]
=

[
3 2
4 1

] [
x1
x2

]

(b) The matrix A =

[
3 2
4 1

]
has rank 2. Hence, it has an inverse A−1. Observe that:

[
y1
y2

]
= A

[
x1
x2

]
leads to

A−1
[

y1
y2

]
=

[
x1
x2

]

By applying Gauss-Jordan elimination, we can get A−1 =

[
−1/5 2/5
4/5 −3/5

]
. Therefore:

[
x1
x2

]
=

[
−1/5 2/5
4/5 −3/5

] [
y1
y2

]
.

Problem 5. Let V be a set of 1 × n vectors. Let V ′ be the projection of V on the first t < n
components, namely:

V ′ =
{

[x1, x2, ..., xt]
∣∣ [x1, x2, ..., xt, xt+1, ..., xn] ∈ V

}
.

Prove: the dimension of V is at least the dimension of V ′.

For example, if V is the set of 5 vectors in Problem 1 and t = 2, then V ′ is the set of following
vectors:

[3, 0]

[6, 1]

[12, 1]

[6, 0]

[9, 0].

Solution. For a row vector v, we will denote by v[i] the i-th element of v. Let d′ be the dimension
of V ′. This means that we can find d′ 1× t vectors v′

1, ...,v
′
t in V ′ that are linearly independent.

Remember that each v′
i must come from a vector vi ∈ V , for 1 ≤ i ≤ t. The vectors v1, ...,vd′

must be linearly independent. Otherwise, suppose

c1 · v1 + ... + cd′ · vd′ = 0
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for some real numbers c1, ..., cd′ that are not all 0. Then it must hold that

c′1 · v′
1 + ... + cd′ · v′

d′ = 0

contradicting the fact that v′
1, ...,v

′
t are linearly independent.

Problem 6 (Hard). Consider the following system of linear equations:
1 0 0 1 1
0 1 0 0 1
0 0 1 0 1
1 1 0 1 2
0 1 1 0 2




x1
x2
x3
x4
x5

 =


0
0
0
0
0

 .

Let V be the set of 5× 1 vectors


x1
x2
x3
x4
x5

 that satisfy the equation. Prove that V has dimension 2,

and find a basis of V .

Solution. The system can be transformed into:
1 0 0 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 0 0
0 0 0 0 0




x1
x2
x3
x4
x5

 =


0
0
0
0
0

 .

It follows that we can derive all the solutions


x1
x2
x3
x4
x5

 as follows. First, set x4, x5 to any real

numbers (i.e., they are unconstrained). Then, solve x1, x2, x3 as:

x1 = −(x4 + x5)

x2 = −x5
x3 = −x5. (1)

Denote by V ′ the set of all vectors

[
x4
x5

]
. It is clear that V ′ has dimension 2 (remember: x4, x5

are unconstrained). V can be obtained from V ′ through a linear transformation. Therefore, the
dimension of V is at most the dimension of V ′. In other words, the dimension of V is at most 2.

On the other hand, note that V ′ is the projection of V onto the 4-th and 5-th components.
From the result of Problem 4, we know that the dimension of V is at least the dimension of V ′. In
other words, the dimension of V is at least 2.

We now conclude that the dimension of V is precisely 2.
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To find a basis of V , simply set

[
x4
x5

]
to

[
1
0

]
and

[
0
1

]
, respectively. The former gives

x1
x2
x3
x4
x5

 =


−1
0
0
1
0

 and the latter gives


x1
x2
x3
x4
x5

 =


−1
−1
−1
0
1

.

Problem 7 (Hard). Consider the following linear system about x

Ax = 0

where A is an m × n coefficient matrix, and x an n × 1 matrix. Let V be the set of all such x
satisfying the system. Suppose that the rank of A is r < n. Prove that V has dimension n− r.

Solution. Let B be a row echelon form of A. We know that B has exactly r non-zero rows.

The solutions x =


x1
x2
...
xn

 of the system can be obtained as follows. First, fix


xr+1

xr+2

...
xn

 to an

arbitrary (n − r) × 1 vector. Then, the r non-zero rows of B give a linear system with respect to
x1, x2, ..., xr (treating xr+1, xr+2, ..., xr as constants). This linear system has a unique solution.

Therefore, V is the set of all outputs of a linear function f(xr+1, xr+2, ..., xn) where (i) each
output of f is an n-dimensional vector v, and (ii) xr+1, xr+2, ..., xn can be arbitrary real values. In
other words, f is in fact a linear transformation from the set of all possible (n− r)× 1 vectors to
V . It thus follows that the dimension of V is at most n− r.

On the other hand, since the projection of V onto the components xr+1, ..., xn is the set of all
possible (n− r)× 1 vectors. It follows from the result of Problem 4 that V has dimension at least
n− r.

We now conclude that the dimension of V is exactly n− r.

4


