Exercises: Dimensions, Spans, and Linear Transformations

In the following exercises, \mathbb{R} denotes the set of all real numbers.
Problem 1. Let V be the set of following 1×4 vectors:

$$
\begin{aligned}
& {[3,0,1,2]} \\
& {[6,1,0,0]} \\
& {[12,1,2,4]} \\
& {[6,0,2,4]} \\
& {[9,0,1,2]}
\end{aligned}
$$

Find the dimension of V.
Solution. Since the matrix

$$
\left[\begin{array}{cccc}
3 & 0 & 1 & 2 \\
6 & 1 & 0 & 0 \\
12 & 1 & 2 & 4 \\
6 & 0 & 2 & 4 \\
9 & 0 & 1 & 2
\end{array}\right]
$$

has rank 2 (see the exercise list on "Matrix Rank"), the dimension of V is 2 .
Problem 2. Let V be the set of 1×4 vectors $[2 x-3 y, x+2 y,-y, 4 x]$ with $x, y \in \mathbb{R}$. Find the dimension of V and give a basis of V.

Solution. Denote by V^{\prime} the set of 1×2 vectors $[x, y]$ with $x, y \in \mathbb{R}$. V is obtained from V^{\prime} through a linear transformation. Clearly the dimension of V^{\prime} is 2 (here is a basis for $V^{\prime}:\{[1,0],[0,1]\}$). Thus, the dimension of V is at most 2 . To prove that the dimension of V is exactly 2 , it suffices to find two vectors in V that are linearly independent. The following are two such vectors: $[2,1,0,4]$ (given by $x=1, y=0$) and $[-3,2,-1,0]$ (given by $x=0, y=1$). They also form a basis of V.

Problem 3. For each set V of vectors given below, find its dimension and give a basis:

- (a) V is the set of 2 D points given by $y=x$ (here, we regard each point (x, y) as a 1×2 vector $[x, y]$);
- (b) V is the set of 2D points given by $y=x+1$.

Solution. (a) Dimension 1. A basis: $\{[1,1]\}$.
(b) Dimension 2. A basis: $\{[0,1],[-1,0]\}$.

Problem 4. Let V_{1} be the set of vectors $\left[x_{1}, x_{2}\right]^{T}$ where $x_{1} \in \mathbb{R}$ and $x_{2} \in \mathbb{R}$. Define:

$$
\begin{aligned}
y_{1} & =3 x_{1}+2 x_{2} \\
y_{2} & =4 x_{1}+x_{2}
\end{aligned}
$$

Let V_{2} be the set of vectors $\left[y_{1}, y_{2}\right]^{T}$ obtained by applying the above to all vectors $\left[x_{1}, x_{2}\right]^{T} \in V_{1}$. Answer the following questions:
(a) Give the matrix \boldsymbol{A} in the linear transformation $\left[y_{1}, y_{2}\right]^{T}=\boldsymbol{A}\left[x_{1}, x_{2}\right]^{T}$ from V_{1} to V_{2}.
(b) It is known that there is a linear transformation $\left[x_{1}, x_{2}\right]^{T}=\boldsymbol{A}^{\prime}\left[y_{1}, y_{2}\right]^{T}$ from V_{2} to V_{1}. Give the details of the matrix \boldsymbol{A}^{\prime}.

Solution. (a) The transformation can be written as:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

(b) The matrix $\boldsymbol{A}=\left[\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right]$ has rank 2. Hence, it has an inverse \boldsymbol{A}^{-1}. Observe that:

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\boldsymbol{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

leads to

$$
\boldsymbol{A}^{-1}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

By applying Gauss-Jordan elimination, we can get $\boldsymbol{A}^{-1}=\left[\begin{array}{cc}-1 / 5 & 2 / 5 \\ 4 / 5 & -3 / 5\end{array}\right]$. Therefore:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 / 5 & 2 / 5 \\
4 / 5 & -3 / 5
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

Problem 5. Let V be a set of $1 \times n$ vectors. Let V^{\prime} be the projection of V on the first $t<n$ components, namely:

$$
V^{\prime}=\left\{\left[x_{1}, x_{2}, \ldots, x_{t}\right] \mid\left[x_{1}, x_{2}, \ldots, x_{t}, x_{t+1}, \ldots, x_{n}\right] \in V\right\} .
$$

Prove: the dimension of V is at least the dimension of V^{\prime}.
For example, if V is the set of 5 vectors in Problem 1 and $t=2$, then V^{\prime} is the set of following vectors:

$$
\begin{aligned}
& {[3,0]} \\
& {[6,1]} \\
& {[12,1]} \\
& {[6,0]} \\
& {[9,0] .}
\end{aligned}
$$

Solution. For a row vector \boldsymbol{v}, we will denote by $\boldsymbol{v}[i]$ the i-th element of \boldsymbol{v}. Let d^{\prime} be the dimension of V^{\prime}. This means that we can find $d^{\prime} 1 \times t$ vectors $\boldsymbol{v}^{\prime}{ }_{1}, \ldots, \boldsymbol{v}_{t}^{\prime}$ in V^{\prime} that are linearly independent. Remember that each $\boldsymbol{v}^{\prime}{ }_{i}$ must come from a vector $\boldsymbol{v}_{i} \in V$, for $1 \leq i \leq t$. The vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{d^{\prime}}$ must be linearly independent. Otherwise, suppose

$$
c_{1} \cdot \boldsymbol{v}_{1}+\ldots+c_{d^{\prime}} \cdot \boldsymbol{v}_{d^{\prime}}=0
$$

for some real numbers $c_{1}, \ldots, c_{d^{\prime}}$ that are not all 0 . Then it must hold that

$$
c_{1}^{\prime} \cdot \boldsymbol{v}_{1}^{\prime}+\ldots+c_{d^{\prime}} \cdot \boldsymbol{v}_{d^{\prime}}^{\prime}=0
$$

contradicting the fact that $\boldsymbol{v}^{\prime}{ }_{1}, \ldots, \boldsymbol{v}^{\prime}{ }_{t}$ are linearly independent.
Problem 6 (Hard). Consider the following system of linear equations:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 2 \\
0 & 1 & 1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Let V be the set of 5×1 vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ that satisfy the equation. Prove that V has dimension 2, and find a basis of V.

Solution. The system can be transformed into:

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

It follows that we can derive all the solutions $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ as follows. First, set x_{4}, x_{5} to any real
numbers (i.e., they are unconstrained). Then, solve x_{1}, x_{2}, x_{3} as:

$$
\begin{align*}
& x_{1}=-\left(x_{4}+x_{5}\right) \\
& x_{2}=-x_{5} \\
& x_{3}=-x_{5} . \tag{1}
\end{align*}
$$

Denote by V^{\prime} the set of all vectors $\left[\begin{array}{l}x_{4} \\ x_{5}\end{array}\right]$. It is clear that V^{\prime} has dimension 2 (remember: x_{4}, x_{5} are unconstrained). V can be obtained from V^{\prime} through a linear transformation. Therefore, the dimension of V is at most the dimension of V^{\prime}. In other words, the dimension of V is at most 2 .

On the other hand, note that V^{\prime} is the projection of V onto the 4 -th and 5 -th components. From the result of Problem 4, we know that the dimension of V is at least the dimension of V^{\prime}. In other words, the dimension of V is at least 2 .

We now conclude that the dimension of V is precisely 2 .

To find a basis of V, simply set $\left[\begin{array}{l}x_{4} \\ x_{5}\end{array}\right]$ to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, respectively. The former gives $\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]$ and the latter gives $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}-1 \\ -1 \\ -1 \\ 0 \\ 1\end{array}\right]$.

Problem 7 (Hard). Consider the following linear system about \boldsymbol{x}

$$
\boldsymbol{A x}=\mathbf{0}
$$

where \boldsymbol{A} is an $m \times n$ coefficient matrix, and \boldsymbol{x} an $n \times 1$ matrix. Let V be the set of all such \boldsymbol{x} satisfying the system. Suppose that the rank of \boldsymbol{A} is $r<n$. Prove that V has dimension $n-r$.

Solution. Let \boldsymbol{B} be a row echelon form of \boldsymbol{A}. We know that \boldsymbol{B} has exactly r non-zero rows.
The solutions $\boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right]$ of the system can be obtained as follows. First, fix $\left[\begin{array}{c}x_{r+1} \\ x_{r+2} \\ \ldots \\ x_{n}\end{array}\right]$ to an arbitrary $(n-r) \times 1$ vector. Then, the r non-zero rows of \boldsymbol{B} give a linear system with respect to $x_{1}, x_{2}, \ldots, x_{r}$ (treating $x_{r+1}, x_{r+2}, \ldots, x_{r}$ as constants). This linear system has a unique solution.

Therefore, V is the set of all outputs of a linear function $\boldsymbol{f}\left(x_{r+1}, x_{r+2}, \ldots, x_{n}\right)$ where (i) each output of \boldsymbol{f} is an n-dimensional vector \boldsymbol{v}, and (ii) $x_{r+1}, x_{r+2}, \ldots, x_{n}$ can be arbitrary real values. In other words, \boldsymbol{f} is in fact a linear transformation from the set of all possible $(n-r) \times 1$ vectors to V. It thus follows that the dimension of V is at most $n-r$.

On the other hand, since the projection of V onto the components x_{r+1}, \ldots, x_{n} is the set of all possible $(n-r) \times 1$ vectors. It follows from the result of Problem 4 that V has dimension at least $n-r$.

We now conclude that the dimension of V is exactly $n-r$.

