Exercises: Orthogonal and Symmetric Matrices

Problem 1. Consider the following set S of column vectors:

$$S = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\\cos\theta\\\sin\theta \end{bmatrix}, \begin{bmatrix} x\\y\\z \end{bmatrix} \right\}$$

Find all the possible $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ that makes S an orthogonal set.

Problem 2. Consider the following matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 & x \\ 0 & \cos \theta & y \\ 0 & \sin \theta & z \end{bmatrix}$$

Find all the possible $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ that makes \boldsymbol{A} orthogonal.

Problem 3. Prove: if matrix A is orthogonal, then its determinants must be either 1 or -1.

Problem 4. Prove: if matrices A and B are both orthogonal, then AB is also orthogonal.

Problem 5. Prove: if an $n \times n$ matrix \boldsymbol{A} is orthogonal, then (i) \boldsymbol{A}^{-1} definitely exists, and (ii) \boldsymbol{A}^{-1} must also be orthogonal.

Problem 6. Diagonalize the following matrix

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

into QBQ^{-1} where **B** is a diagonal matrix, and **Q** is an orthogonal matrix. You need to give the details of only **Q** and **B**, namely, you do not need to give the details of Q^{-1} .

Problem 7. Suppose that an $n \times n$ matrix \boldsymbol{A} can be computed as $\boldsymbol{Q}\boldsymbol{B}\boldsymbol{Q}^{-1}$ where \boldsymbol{Q} is an $n \times n$ orthogonal matrix, and \boldsymbol{B} is an $n \times n$ diagonal matrix. Prove: \boldsymbol{A} is a symmetric matrix.