Exercises: Orthogonal and Symmetric Matrices

Problem 1. Consider the following set S of column vectors:

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\cos \theta \\
\sin \theta
\end{array}\right],\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right\}
$$

Find all the possible $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ that makes S an orthogonal set.
Problem 2. Consider the following matrix

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 0 & x \\
0 & \cos \theta & y \\
0 & \sin \theta & z
\end{array}\right]
$$

Find all the possible $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ that makes \boldsymbol{A} orthogonal.
Problem 3. Prove: if matrix \boldsymbol{A} is orthogonal, then its determinants must be either 1 or -1 .
Problem 4. Prove: if matrices \boldsymbol{A} and \boldsymbol{B} are both orthogonal, then $\boldsymbol{A B}$ is also orthogonal.
Problem 5. Prove: if an $n \times n$ matrix \boldsymbol{A} is orthogonal, then (i) \boldsymbol{A}^{-1} definitely exists, and (ii) \boldsymbol{A}^{-1} must also be orthogonal.

Problem 6. Diagonalize the following matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

into $\boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}$ where \boldsymbol{B} is a diagonal matrix, and \boldsymbol{Q} is an orthogonal matrix. You need to give the details of only \boldsymbol{Q} and \boldsymbol{B}, namely, you do not need to give the details of \boldsymbol{Q}^{-1}.

Problem 7. Suppose that an $n \times n$ matrix \boldsymbol{A} can be computed as $\boldsymbol{Q B} \boldsymbol{Q}^{-1}$ where \boldsymbol{Q} is an $n \times n$ orthogonal matrix, and \boldsymbol{B} is an $n \times n$ diagonal matrix. Prove: \boldsymbol{A} is a symmetric matrix.

