Exercises: Orthogonal and Symmetric Matrices

Problem 1. Consider the following set S of column vectors:

$$
S=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\cos \theta \\
\sin \theta
\end{array}\right],\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right\}
$$

Find all the possible $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ that makes S an orthogonal set.
Solution. For S to be orthogonal, the vectors in S must be mutually orthogonal to each other. We therefore have:

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0} \\
{\left[\begin{array}{c}
0 \\
\cos \theta \\
\sin \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0}
\end{gathered}
$$

which gives the following set of equations on variables x, y, z :

$$
\begin{aligned}
x & =0 \\
(\cos \theta) y+(\sin \theta) z & =0
\end{aligned}
$$

The set of solutions $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is:

$$
\left\{\left.\left[\begin{array}{c}
0 \\
-\frac{\sin \theta}{\cos \theta} t \\
t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\} .
$$

Problem 2. Consider the following matrix

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 0 & x \\
0 & \cos \theta & y \\
0 & \sin \theta & z
\end{array}\right]
$$

Find all the possible $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ that makes \boldsymbol{A} orthogonal.
Solution. Recall that \boldsymbol{A} is orthogonal if and only if both conditions below are satisfied:

- All column vectors are mutually orthogonal.
- All column vectors have unit length.

In Problem 1, we have already obtained the set of $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ satisfying the first bullet:

$$
\left\{\left.\left[\begin{array}{c}
0 \\
-\frac{\sin \theta}{\cos \theta} t \\
t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\} .
$$

To satisfy the second bullet, we need:

$$
\begin{align*}
x^{2}+y^{2}+z^{2} & =1 \Rightarrow \\
\left(-\frac{\sin \theta}{\cos \theta} t\right)^{2}+t^{2} & =1 \Rightarrow \\
t^{2} & =(\cos \theta)^{2} \tag{1}
\end{align*}
$$

which means that $t=\cos \theta$ or $t=-\cos \theta$. Hence, there are only two $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ that can make \boldsymbol{A} orthogonal:

$$
\left[\begin{array}{c}
0 \\
-\sin \theta \\
\cos \theta
\end{array}\right],\left[\begin{array}{c}
0 \\
\sin \theta \\
-\cos \theta
\end{array}\right]
$$

Problem 3. Prove: if matrix \boldsymbol{A} is orthogonal, then its determinants must be either 1 or -1 .

Solution.

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{I}) & =1 \Rightarrow \\
\operatorname{det}\left(\boldsymbol{A} \boldsymbol{A}^{-1}\right) & =1 \Rightarrow \\
\left(\operatorname{by} \boldsymbol{A}^{-1}=\boldsymbol{A}^{T}\right) \operatorname{det}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right) & =1 \Rightarrow \\
\operatorname{det}(\boldsymbol{A}) \cdot \operatorname{det}\left(\boldsymbol{A}^{T}\right) & =1 \Rightarrow \\
\text { (as } \left.\operatorname{det}(\boldsymbol{A})=\operatorname{det}\left(\boldsymbol{A}^{T}\right)\right) \operatorname{det}(\boldsymbol{A}) \cdot \operatorname{det}(A) & =1 \Rightarrow
\end{aligned}
$$

which completes the proof.
Problem 4. Prove: if matrices \boldsymbol{A} and \boldsymbol{B} are both orthogonal, then $\boldsymbol{A B}$ is also orthogonal.
Solution. It suffices to prove that

$$
\begin{aligned}
(\boldsymbol{A B})(\boldsymbol{A} \boldsymbol{B})^{T} & =\boldsymbol{I} \Leftrightarrow \\
(\boldsymbol{A B})\left(\boldsymbol{B}^{T} \boldsymbol{A}^{T}\right) & =\boldsymbol{I}
\end{aligned}
$$

Since \boldsymbol{A} and \boldsymbol{B} are both orthogonal, we know: $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{I}$ and $\boldsymbol{B} \boldsymbol{B}^{T}=\boldsymbol{I}$. Therefore, $\boldsymbol{A}\left(\boldsymbol{B B}^{T}\right) \boldsymbol{A}^{T}=$ $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{I}$.

Problem 5. Prove: if an $n \times n$ matrix \boldsymbol{A} is orthogonal, then (i) \boldsymbol{A}^{-1} definitely exists, and (ii) \boldsymbol{A}^{-1} must also be orthogonal.

Solution. Since \boldsymbol{A} is orthogonal, its row vectors form an orthogonal set, which therefore is linearly independent. This means that \boldsymbol{A} has rank n, meaning that \boldsymbol{A}^{-1} definitely exists.

To prove that \boldsymbol{A}^{-1} is orthogonal, we need to prove $\boldsymbol{A}^{-1} \cdot\left(\boldsymbol{A}^{-1}\right)^{T}=\boldsymbol{I}$. For this purpose, note that since \boldsymbol{A} is orthogonal, we have $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{I}$, namely $\boldsymbol{A}^{-1}=\boldsymbol{A}^{T}$. Equipped with this fact, we can show $\boldsymbol{A}^{-1} \cdot\left(\boldsymbol{A}^{-1}\right)^{T}=\boldsymbol{I}$ as follows:

$$
\begin{align*}
\boldsymbol{I}^{T} & =\boldsymbol{I} \Rightarrow \tag{2}\\
\left(\boldsymbol{A}^{-\mathbf{1}} \boldsymbol{A}\right)^{T} & =\boldsymbol{I} \Rightarrow \\
\boldsymbol{A}^{T}\left(\boldsymbol{A}^{-\mathbf{1}}\right)^{T} & =\boldsymbol{I} \Rightarrow \\
\boldsymbol{A}^{-1} \cdot\left(\boldsymbol{A}^{-1}\right)^{T} & =\boldsymbol{I}
\end{align*}
$$

which completes the proof.
Problem 6. Diagonalize the following matrix

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

into $\boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}$ where \boldsymbol{B} is a diagonal matrix, and \boldsymbol{Q} is an orthogonal matrix. You need to give the details of only \boldsymbol{Q} and \boldsymbol{B}, namely, you do not need to give the details of \boldsymbol{Q}^{-1}.

Solution. We aim to obtain three eigenvectors of \boldsymbol{A} - denote them as $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ respectively that are mutually orthogonal to each other and have lengths 1.

To start with, find the eigenvalues of $\boldsymbol{A}: \lambda_{1}=1$ and $\lambda_{2}=-1$.
Now, obtain the eigenspace of λ_{1} :

$$
\left\{\left.\left[\begin{array}{l}
u \\
u \\
v
\end{array}\right] \right\rvert\, u, v \in \mathbb{R}\right\} .
$$

This set has dimension 2. We will first take from the set two eigenvectors \boldsymbol{x}_{1} and \boldsymbol{x}_{2} that are orthogonal to each other. For this purpose, first set \boldsymbol{x}_{1} to an arbitrary non-zero vector, e.g., $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. Regarding $\boldsymbol{x}_{2}=\left[\begin{array}{l}u \\ u \\ v\end{array}\right]$, we ensure orthogonality between \boldsymbol{x}_{1} and \boldsymbol{x}_{2} by requiring their dot product to be 0 :

$$
\begin{aligned}
{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
u \\
u \\
v
\end{array}\right] } & =0 \Rightarrow \\
u+u & =0 \Rightarrow \\
u & =0 .
\end{aligned}
$$

Note that there is no constraint on v. We can set v to be any value such that \boldsymbol{x}_{2} is not a zero-vector, e.g., $v=1$ which gives $\boldsymbol{x}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Finally, normalize \boldsymbol{x}_{1} and \boldsymbol{x}_{2} to have length 1, which gives:
$\boldsymbol{v}_{1}=\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right]$ and $\boldsymbol{v}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Next, obtain the eigenspace of λ_{2} :

$$
\left\{\left.\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

This set has dimension 1. Take an arbitrary eigenvector from the set, e.g., $\boldsymbol{x}_{3}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$. Normalizing this vector to have length 1 gives $\boldsymbol{v}_{3}=\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right]$.

Therefore:

$$
\begin{aligned}
\boldsymbol{Q} & =\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0
\end{array}\right] \\
\boldsymbol{B} & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] .
\end{aligned}
$$

Problem 7. Suppose that an $n \times n$ matrix \boldsymbol{A} can be computed as $\boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}$ where \boldsymbol{Q} is an $n \times n$ orthogonal matrix, and \boldsymbol{B} is an $n \times n$ diagonal matrix. Prove: \boldsymbol{A} is a symmetric matrix.

Solution. We aim to prove that $\boldsymbol{A}=\boldsymbol{A}^{T}$. Towards this purpose, we compute \boldsymbol{A}^{T} as follows:

$$
\begin{align*}
\boldsymbol{A}^{T} & =\left(\boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}\right)^{T} \Rightarrow \\
\boldsymbol{A}^{T} & =\left(\boldsymbol{Q}^{-1}\right)^{T} \boldsymbol{B}^{T} \boldsymbol{Q}^{T} \tag{3}
\end{align*}
$$

Since \boldsymbol{Q} is an orthogonal matrix, we have: $\boldsymbol{Q}^{-1}=\boldsymbol{Q}^{T}$. Hence:

$$
(3)=\left(\boldsymbol{Q}^{T}\right)^{T} \boldsymbol{B}^{T} \boldsymbol{Q}^{-1}=\boldsymbol{Q} \boldsymbol{B} \boldsymbol{Q}^{-1}=\boldsymbol{A} .
$$

This completes the proof.

