Exercises: Similarity Transformation

Problem 1. Diagonalize the following matrix:

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right]
$$

Problem 2. Consider again the matrix \boldsymbol{A} in Problem 5. Calculate \boldsymbol{A}^{t} for any integer $t \geq 1$.
Problem 3. Diagonalize the matrix $\boldsymbol{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$.
Problem 4. Suppose that matrices \boldsymbol{A} and \boldsymbol{B} are similar to each other, namely, there exists \boldsymbol{P} such that $\boldsymbol{A}=\boldsymbol{P}^{-1} \boldsymbol{B P}$. Prove: if \boldsymbol{x} is an eigenvector of \boldsymbol{A} under eigenvalue λ, then $\boldsymbol{P} \boldsymbol{x}$ is an eigenvector of \boldsymbol{B} under eigenvalue λ.

Problem 5. Suppose that an $n \times n$ matrix \boldsymbol{A} has n linearly independent eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$. Prove: for any $n \times 1$ vector $\boldsymbol{x}, \boldsymbol{A} \boldsymbol{x}$ is a linear combination of $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$.

Problem 6. Prove or disprove: if an $n \times n$ matrix \boldsymbol{A} has rank n, then it must have n independent eigenvectors.

Problem 7. Prove that $\boldsymbol{A}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$ is not diagonalizable.
Problem 8. Let $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} be three $n \times n$ matrices for some integer n. Prove that if \boldsymbol{A} is similar to \boldsymbol{B} and \boldsymbol{B} is similar to \boldsymbol{C}, then \boldsymbol{A} is similar to \boldsymbol{C}.

Problem 9. Decide whether

$$
\boldsymbol{A}=\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right]
$$

is similar to

$$
\boldsymbol{B}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]
$$

