Exercises: Similarity Transformation

Problem 1. Diagonalize the following matrix:

\[
A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}
\]

Solution. Matrix \(A \) has two eigenvalues \(\lambda_1 = 3 \) and \(\lambda_2 = 2 \). Since (i) \(A \) is a \(2 \times 2 \) matrix and (ii) it has 2 distinct eigenvalues, we can apply the diagonalization method we discussed in class. Specifically, we obtain an arbitrary eigenvector \(\mathbf{v}_1 \) of \(\lambda_1 \), say \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \) and, and an arbitrary eigenvector \(\mathbf{v}_2 \) of \(\lambda_2 \), say \(\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \). Then, we form:

\[
Q = \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix}
\]

by using \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) as the first and second columns, respectively. \(Q \) has the inverse:

\[
Q^{-1} = \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}
\]

We thus obtain the following diagonalization of \(A \):

\[
A = Q \text{ diag}[3, 2] Q^{-1}.
\]

Problem 2. Consider again the matrix \(A \) in Problem 5. Calculate \(A^t \) for any integer \(t \geq 1 \).

Solution. We already know that \(A \):

\[
A = Q \text{ diag}[3, 2] Q^{-1}.
\]

Hence:

\[
A^t = Q \text{ diag}[3^t, 2^t] Q^{-1}
\]

\[
= \begin{bmatrix} 1 & 1 \\ -2 & -1 \end{bmatrix} \begin{bmatrix} 3^t & 0 \\ 0 & 2^t \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}
\]

\[
= \begin{bmatrix} -3^t + 2^{t+1} & -3^t + 2^t \\ 2 \times 3^t - 2^{t+1} & 2 \times 3^t - 2^t \end{bmatrix}
\]

Problem 3. Diagonalize the matrix \(A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \).

Solution. Recall that all symmetric matrices are diagonalizable. \(A \) is a \(3 \times 3 \) matrix. The key is to find three linearly independent eigenvectors.
From the solution of Problem 1, we know that A has eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$.

$\text{EigenSpace}(\lambda_1)$ includes all \[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]
satisfying
\[
\begin{align*}
x_1 &= u \\
x_2 &= v \\
x_3 &= u
\end{align*}
\]
for any $u, v \in \mathbb{R}$. The vector space $\text{EigenSpace}(\lambda_1)$ has dimension 2 with a basis $\{v_1, v_2\}$ where $v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ (given by $u = 1, v = 0$) and $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ (given by $u = 0, v = 1$).

Similarly, $\text{EigenSpace}(\lambda_2)$ includes all \[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
\]
satisfying
\[
\begin{align*}
x_1 &= u \\
x_2 &= 0 \\
x_3 &= -u
\end{align*}
\]
for any $u \in \mathbb{R}$. The vector space $\text{EigenSpace}(\lambda_2)$ has dimension 1 with a basis $\{v_3\}$ where $v_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ (given by $u = 1$).

So far, we have obtained three linearly independent eigenvectors v_1, v_2, v_3 of A. We can then apply the diagonalization method exemplified in Problem 5 to diagonalize A. Specifically, we form:

$$ Q = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} $$

Q has the inverse:

$$ Q^{-1} = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & -1/2 \end{bmatrix} $$

We thus obtain the following diagonalization of A:

$$ A = Q \text{diag}[1, 1, -1] Q^{-1}. $$

Problem 4. Suppose that matrices A and B are similar to each other, namely, there exists P such that $A = P^{-1}BP$. Prove: if x is an eigenvector of A under eigenvalue λ, then Px is an eigenvector of B under eigenvalue λ.

Solution. By definition of similarity, we know $A = P^{-1}BP$. We proved in the lecture that λ must also be an eigenvalue of B. Since x is an eigenvector of A under λ, we know:

$$ Ax = \lambda x \Rightarrow $$

$$ P^{-1}BPx = \lambda x \Rightarrow $$

$$ B(Px) = \lambda(Px) $$
which completes the proof.

Problem 5. Suppose that an $n \times n$ matrix A has n linearly independent eigenvectors v_1, v_2, \ldots, v_n. Prove: for any $n \times 1$ vector x, Ax is a linear combination of v_1, v_2, \ldots, v_n.

Solution. Assume that v_i ($i \in [1, k]$) is an eigenvector of A under eigenvalue λ_i. We have $Av_i = \lambda_i v_i$. Since v_1, v_2, \ldots, v_n are linearly independent, we know that x must be a linear combination v_1, v_2, \ldots, v_n. Namely, there exist c_1, \ldots, c_n such that

$$x = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n \Rightarrow$$

$$Ax = c_1 Av_1 + c_2 Av_2 + \ldots + c_n Av_n \Rightarrow$$

$$Ax = c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2 + \ldots + c_n \lambda_n v_n,$$

which completes the proof.

Problem 6. Prove or disprove: if an $n \times n$ matrix A has rank n, then it must have n independent eigenvectors.

Solution. False. Consider $n = 2$ and $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. It has only one distinct eigenvalue 1. Thus, any eigenvector v of A must satisfy:

$$(A - I)x = 0 \Rightarrow$$

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x = 0$$

Thus, any eigenvector of A must have the form $\left\{ \begin{bmatrix} t \\ 0 \end{bmatrix} \mid t \in \mathbb{R}, t \neq 0 \right\}$. This set of vectors has a dimension of 1.

Problem 7. Prove that $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is not diagonalizable.

Solution. A has two eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 2$. Let v_1 be an eigenvector of λ_1. v_1 must satisfy:

$$(A - \lambda_1 I)v_1 = 0 \Rightarrow$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} v_1 = 0 \Rightarrow$$

Hence, the set of eigenvectors of λ_1 is:

$$\left\{ \begin{bmatrix} t \\ 0 \\ 0 \end{bmatrix} \mid t \in \mathbb{R}, t \neq 0 \right\}$$

This set has dimension 1.
Let \(v_2 \) be an eigenvector of \(\lambda_2 \). \(v_2 \) must satisfy:

\[
(A - \lambda_1 I)v_2 = 0 \Rightarrow \begin{bmatrix}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{bmatrix} v_2 = 0 \Rightarrow
\]

Hence, the set of eigenvectors of \(\lambda_2 \) is:

\[
\left\{ \begin{bmatrix} 0 \\ 0 \\ t \end{bmatrix} \mid t \in \mathbb{R}, t \neq 0 \right\}
\]

This set also has dimension 1.

It thus follows that the largest number of linearly independent eigenvectors of \(A \) is \(1 + 1 = 2 \). Therefore, \(A \) is not diagonalizable.

Problem 8. Let \(A, B, \) and \(C \) be three \(n \times n \) matrices for some integer \(n \). Prove that if \(A \) is similar to \(B \) and \(B \) is similar to \(C \), then \(A \) is similar to \(C \).

Solution. From the fact that \(A \) is similar to \(B \) and \(B \) is similar to \(C \), we know:

\[
A = P^{-1}BP
\]

and

\[
B = Q^{-1}CQ.
\]

Hence:

\[
A = P^{-1}Q^{-1}BQP = (QP)^{-1}B(QP)
\]

which completes the proof.

Problem 9. Decide whether

\[
A = \begin{bmatrix} 1 & -1 \\ 2 & 4 \end{bmatrix}
\]

is similar to

\[
B = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}.
\]

Solution 1. From Problem 1, we know that \(A \) has distinct eigenvalues 3 and 2. Hence, \(A \) is similar to the diagonal matrix \(diag[3, 2] \). On the other hand, \(B \) clearly also has eigenvalues 3 and 2, and thus, is also similar to \(diag[3, 2] \). From the result of Problem 8, we know that \(A \) is similar to \(B \).
Solution 2. We will try to find an invertible matrix \(P = \begin{bmatrix} x & y \\ z & w \end{bmatrix} \) that makes \(A = PB P^{-1} \) hold. This is equivalent to \(AP = PB \). Hence:

\[
\begin{bmatrix}
1 & -1 \\
2 & 4
\end{bmatrix}
\begin{bmatrix}
x & y \\
z & w
\end{bmatrix}
= \begin{bmatrix}
x & y \\
z & w
\end{bmatrix}
\begin{bmatrix}
3 & 1 \\
0 & 2
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
x - z & y - w \\
x + 4z & 2y + 4w
\end{bmatrix}
= \begin{bmatrix}
3x & x + 2y \\
3z & z + 2w
\end{bmatrix}
\]

This gives the following equation set:

\[
\begin{align*}
x - z &= 3x \\
y - w &= x + 2y \\
2x + 4z &= 3z \\
2y + 4w &= z + 2w
\end{align*}
\]

You can verify that the set of solutions \(\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \) is

\[
\begin{bmatrix}
-u/2 \\
u/2 - v \\
u \\
v
\end{bmatrix}
\quad| \quad u \in \mathbb{R}, v \in \mathbb{R}
\]

Let us try \(u = 2, v = 0 \). This gives \(P = \begin{bmatrix} -1 & 2 \\ 2 & 0 \end{bmatrix} \). Since \(det(P) \neq 0 \), we know that \(P \) is invertible. We can now conclude that \(A \) is similar to \(B \).