Exercises: Matrix Rank

Problem 1. Calculate the rank of the following matrix:

$$
\left[\begin{array}{cccc}
0 & 16 & 8 & 4 \\
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2
\end{array}\right]
$$

Problem 2. Calculate the rank of the following matrix:

$$
\left[\begin{array}{ccc}
4 & -6 & 0 \\
-6 & 0 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4
\end{array}\right]
$$

Problem 3. Judge whether the following vectors are linearly independent.

$$
\begin{aligned}
& {[3,0,1,2]} \\
& {[6,1,0,0]} \\
& {[12,1,2,4]} \\
& {[6,0,2,4]} \\
& {[9,0,1,2]}
\end{aligned}
$$

If they are not, find the largest number of linearly independent vectors among them.
Problem 4. Prove: if \boldsymbol{A} is not square, then either the row vectors or the column vectors are linearly dependent.

Problem 5. Let S be an arbitrary set of 3×1 vectors. Prove that there are at most 3 linearly independent vectors in S.

Problem 6 (Hard). Prove: $\operatorname{rank}(\boldsymbol{A B}) \leq \operatorname{rank} \boldsymbol{A}$.
Problem 7 (Very Hard). Prove: $\operatorname{rank}(\boldsymbol{A}+\boldsymbol{B}) \leq \operatorname{rank} \boldsymbol{A}+\operatorname{rank} \boldsymbol{B}$.

