Exercises: Matrix Rank

Problem 1. Calculate the rank of the following matrix:

Solution. To compute the rank of a matrix, remember two key points: (i) the rank does not change under elementary row operations; (ii) the rank of a row-echelon matrix is easy to acquire. Motivated by this, we convert the given matrix into row echelon form using elementary row operations:

$\begin{bmatrix} 0\\2\\16\\4 \end{bmatrix}$	16 4 8 8	$8\\8\\4\\16$	$\begin{bmatrix} 4 \\ 16 \\ 2 \\ 2 \end{bmatrix}$	\Rightarrow	$\left[\begin{array}{c}2\\16\\4\\0\end{array}\right]$	$\begin{array}{c} 4\\ 8\\ 8\\ 16\end{array}$	8 4 16 8	$\begin{bmatrix} 16 \\ 2 \\ 2 \\ 4 \end{bmatrix}$	
				\Rightarrow	$\left[\begin{array}{c}1\\0\\0\\0\end{array}\right]$	$\begin{array}{c}2\\-24\\0\\4\end{array}$	4 -60 0 2	8 -126 -30 1	
				\Rightarrow	$\left[\begin{array}{c}1\\0\\0\\0\end{array}\right]$	2 4 -24 0	4 2 -60 0	8 1 -126 -30	
				\Rightarrow	$\left[\begin{array}{c}1\\0\\0\\0\end{array}\right]$	2 4 0 - 0	4 2 -48 0	$\begin{bmatrix} 8 \\ 1 \\ -120 \\ -30 \end{bmatrix}$	

As this matrix has 4 non-zero rows, we conclude that the original matrix has rank 4.

Problem 2. Calculate the rank of the following matrix:

$$\left[\begin{array}{rrrr} 4 & -6 & 0 \\ -6 & 0 & 1 \\ 0 & 9 & -1 \\ 0 & 1 & 4 \end{array}\right]$$

Solution.

$$\begin{bmatrix} 4 & -6 & 0 \\ -6 & 0 & 1 \\ 0 & 9 & -1 \\ 0 & 1 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & -3 & 0 \\ -6 & 0 & 1 \\ 0 & 9 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & 9 & -1 \\ 0 & 9 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & 9 & -1 \\ 0 & 1 & 4 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & -9 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 37/9 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & -9 & 1 \\ 0 & 0 & 37/9 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, the rank of the original matrix is 3.

Problem 3. Judge whether the following vectors are linearly independent.

$$\begin{matrix} [3,0,1,2] \\ [6,1,0,0] \\ [12,1,2,4] \\ [6,0,2,4] \\ [9,0,1,2] \end{matrix}$$

If they are not, find the largest number of linearly independent vectors among them.

Solution. This question is essentially asking for the rank of matrix:

3	0	1	2		3	0	1	2]
6	1	0	0		0	1	-2	-4
12	1	2	4	\Rightarrow	0	1	-2	-4
6	0	2	4		0	0	0	0
	0	1	2			0	-2	$\begin{array}{c} 2 \\ -4 \\ -4 \\ 0 \\ -4 \end{array}$
					[3	0	1	2]
					$\begin{bmatrix} 3\\0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \end{array}$	1 -2	$\begin{bmatrix} 2 \\ -4 \end{bmatrix}$
				\Rightarrow	$\begin{bmatrix} 3\\0\\0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	1 -2 -2	$\begin{bmatrix} 2 \\ -4 \\ -4 \end{bmatrix}$
				\Rightarrow	$\begin{bmatrix} 3\\0\\0\\0\end{bmatrix}$	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array} $	1 -2 -2 0	$\begin{bmatrix} 2 \\ -4 \\ -4 \\ 0 \\ 0 \end{bmatrix}$

The rank of the matrix is 3. This means that the maximum number of linearly independent vectors is 3. They are the ones that correspond to the non-zero rows of the final matrix:

 $\begin{array}{l} [3,0,1,2] \\ [6,1,0,0] \\ [9,0,1,2] \end{array}$

Problem 4. Prove: if A is not square, then either the row vectors or the column vectors are linearly dependent.

Proof. The maximum number of linearly independent row vectors is the rank of A, while the maximum number of linearly independent column vectors is the rank of A^T . Suppose that A is an $m \times n$ matrix. If m < n, then rank $A^T = \operatorname{rank} A \le m < n$. Therefore, the column vectors are linear dependent. Similarly, if n < m, then the row vectors are linearly dependent.

Problem 5. Let S be an arbitrary set of 3×1 vectors. Prove that there are at most 3 linearly independent vectors in S.

Proof. Let *n* be the number of vectors in *S*. For an $n \times 3$ matrix *A* where the *i*-th $(1 \le i \le n)$ row is the *i*-th vector in *S*. Clearly, rank $A = \operatorname{rank} A^T \le 3$. Hence, *S* can have at most 3 linearly independent vectors.

Problem 6 (Hard). Prove: $rank(AB) \leq rankA$.

Proof. Suppose that A is an $m \times n$ matrix, and B an $n \times p$ matrix. Let d = rankA. Without loss of generality, assume that the first d rows of A are linearly independent. Denote the row vectors of A as $r_1, ..., r_m$ in top down order, and the column vectors of B as $c_1, ..., c_p$ in left-to-right order.

We will prove that for any $i \in [d+1, m]$, the *i*-th row of AB is a linear combination of the first d rows of AB. This, in effect, shows that $rank(AB) \leq d$.

We know that the first d rows of AB are:

$$egin{array}{rcl} m{v}_1 &=& [m{r}_1 \cdot m{c}_1, m{r}_1 \cdot m{c}_2, ..., m{r}_1 \cdot m{c}_p] \ m{v}_2 &=& [m{r}_2 \cdot m{c}_1, m{r}_2 \cdot m{c}_2, ..., m{r}_2 \cdot m{c}_p] \ ... \ m{v}_d &=& [m{r}_d \cdot m{c}_1, m{r}_d \cdot m{c}_2, ..., m{r}_d \cdot m{c}_p] \end{array}$$

while the *i*-th $(i \in [d+1, m])$ row of **AB** is:

$$oldsymbol{v}_i \;\;=\;\; [oldsymbol{r}_i \cdot oldsymbol{c}_1, oldsymbol{r}_i \cdot oldsymbol{c}_2, ..., oldsymbol{r}_i \cdot oldsymbol{c}_p]$$

Since r_i is a linear combination of $r_1, r_2, ..., r_d$, there exist real values $\alpha_1, ..., \alpha_d$ that (i) are not all zero, and (ii) satisfy:

$$oldsymbol{r}_i = \sum_{z=1}^d lpha_z oldsymbol{r}_z$$

This means that for any $j \in [1, p]$, we have

$$\boldsymbol{r}_i \cdot \boldsymbol{c}_j = \sum_{z=1}^d lpha_z (\boldsymbol{r}_z \cdot \boldsymbol{c}_j)$$

This, in turn, indicates that

$$oldsymbol{v}_i = \sum_{z=1}^d lpha_z oldsymbol{v}_z$$

namely, \boldsymbol{v}_i is a linear combination of $\boldsymbol{v}_1, ..., \boldsymbol{v}_d$.

Problem 7 (Very Hard). Prove: $rank(A + B) \leq rank A + rank B$.

Proof. Let A, B be $m \times n$ matrices. Construct an $(2m) \times (2n)$ matrix:

$$Q = \left[egin{array}{c|c} A & 0 \ \hline 0 & B \end{array}
ight]$$

rank Q = rank A + rank B (you can see this by converting Q into row-echelon form).

Also observe that Q has the same rank as

$$\begin{bmatrix} A & 0 \\ \hline A & B \end{bmatrix}$$

which has the same rank as

$$\left[\begin{array}{c|c} A & A \\ \hline A & A+B \end{array} \right]$$

Since the rank of a submatrix cannot exceed the rank of the whole matrix, we know that rank (A + B) is at most the rank of Q, which as mentioned earlier is rank A + rank B.