Exercises: Matrix Rank

Problem 1. Calculate the rank of the following matrix:

$$
\left[\begin{array}{cccc}
0 & 16 & 8 & 4 \\
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2
\end{array}\right]
$$

Solution. To compute the rank of a matrix, remember two key points: (i) the rank does not change under elementary row operations; (ii) the rank of a row-echelon matrix is easy to acquire. Motivated by this, we convert the given matrix into row echelon form using elementary row operations:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
0 & 16 & 8 & 4 \\
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2
\end{array}\right] } & \Rightarrow\left[\begin{array}{cccc}
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2 \\
0 & 16 & 8 & 4
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 2 & 4 & 8 \\
0 & -24 & -60 & -126 \\
0 & 0 & 0 & -30 \\
0 & 4 & 2 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 2 & 4 & 8 \\
0 & 4 & 2 & 1 \\
0 & -24 & -60 & -126 \\
0 & 0 & 0 & -30
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
1 & 2 & 4 & 8 \\
0 & 4 & 2 & 1 \\
0 & 0 & -48 & -120 \\
0 & 0 & 0 & -30
\end{array}\right]
\end{aligned}
$$

As this matrix has 4 non-zero rows, we conclude that the original matrix has rank 4.
Problem 2. Calculate the rank of the following matrix:

$$
\left[\begin{array}{ccc}
4 & -6 & 0 \\
-6 & 0 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4
\end{array}\right]
$$

Solution.

$$
\begin{aligned}
{\left[\begin{array}{ccc}
4 & -6 & 0 \\
-6 & 0 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4
\end{array}\right] } & \Rightarrow\left[\begin{array}{ccc}
2 & -3 & 0 \\
-6 & 0 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
2 & -3 & 0 \\
0 & -9 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
2 & -3 & 0 \\
0 & -9 & 1 \\
0 & 0 & 0 \\
0 & 0 & 37 / 9
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
2 & -3 & 0 \\
0 & -9 & 1 \\
0 & 0 & 37 / 9 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence, the rank of the original matrix is 3 .
Problem 3. Judge whether the following vectors are linearly independent.

$$
\begin{aligned}
& {[3,0,1,2]} \\
& {[6,1,0,0]} \\
& {[12,1,2,4]} \\
& {[6,0,2,4]} \\
& {[9,0,1,2]}
\end{aligned}
$$

If they are not, find the largest number of linearly independent vectors among them.
Solution. This question is essentially asking for the rank of matrix:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
3 & 0 & 1 & 2 \\
6 & 1 & 0 & 0 \\
12 & 1 & 2 & 4 \\
6 & 0 & 2 & 4 \\
9 & 0 & 1 & 2
\end{array}\right] } & \Rightarrow\left[\begin{array}{cccc}
3 & 0 & 1 & 2 \\
0 & 1 & -2 & -4 \\
0 & 1 & -2 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & -2 & -4
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc}
3 & 0 & 1 & 2 \\
0 & 1 & -2 & -4 \\
0 & 0 & -2 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The rank of the matrix is 3 . This means that the maximum number of linearly independent vectors is 3 . They are the ones that correspond to the non-zero rows of the final matrix:

$$
\begin{aligned}
& {[3,0,1,2]} \\
& {[6,1,0,0]} \\
& {[9,0,1,2]}
\end{aligned}
$$

Problem 4. Prove: if \boldsymbol{A} is not square, then either the row vectors or the column vectors are linearly dependent.

Proof. The maximum number of linearly independent row vectors is the rank of \boldsymbol{A}, while the maximum number of linearly independent column vectors is the rank of \boldsymbol{A}^{T}. Suppose that \boldsymbol{A} is an $m \times n$ matrix. If $m<n$, then $\operatorname{rank} \boldsymbol{A}^{T}=\operatorname{rank} \boldsymbol{A} \leq m<n$. Therefore, the column vectors are linear dependent. Similarly, if $n<m$, then the row vectors are linearly dependent.

Problem 5. Let S be an arbitrary set of 3×1 vectors. Prove that there are at most 3 linearly independent vectors in S.

Proof. Let n be the number of vectors in S. For an $n \times 3$ matrix \boldsymbol{A} where the i-th $(1 \leq i \leq n)$ row is the i-th vector in S. Clearly, $\operatorname{rank} \boldsymbol{A}=\operatorname{rank} \boldsymbol{A}^{T} \leq 3$. Hence, S can have at most 3 linearly independent vectors.

Problem 6 (Hard). Prove: $\operatorname{rank}(\boldsymbol{A B}) \leq \operatorname{rank} \boldsymbol{A}$.
Proof. Suppose that \boldsymbol{A} is an $m \times n$ matrix, and \boldsymbol{B} an $n \times p$ matrix. Let $d=\operatorname{rank} \boldsymbol{A}$. Without loss of generality, assume that the first d rows of \boldsymbol{A} are linearly independent. Denote the row vectors of \boldsymbol{A} as $\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{m}$ in top down order, and the column vectors of \boldsymbol{B} as $\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{p}$ in left-to-right order.

We will prove that for any $i \in[d+1, m]$, the i-th row of $\boldsymbol{A} \boldsymbol{B}$ is a linear combination of the first d rows of $\boldsymbol{A B}$. This, in effect, shows that $\operatorname{rank}(\boldsymbol{A B}) \leq d$.

We know that the first d rows of $\boldsymbol{A B}$ are:

$$
\begin{aligned}
\boldsymbol{v}_{1}= & {\left[\boldsymbol{r}_{1} \cdot \boldsymbol{c}_{1}, \boldsymbol{r}_{1} \cdot \boldsymbol{c}_{2}, \ldots, \boldsymbol{r}_{1} \cdot \boldsymbol{c}_{p}\right] } \\
\boldsymbol{v}_{2}= & {\left[\boldsymbol{r}_{2} \cdot \boldsymbol{c}_{1}, \boldsymbol{r}_{2} \cdot \boldsymbol{c}_{2}, \ldots, \boldsymbol{r}_{2} \cdot \boldsymbol{c}_{p}\right] } \\
& \ldots \\
\boldsymbol{v}_{d}= & {\left[\boldsymbol{r}_{d} \cdot \boldsymbol{c}_{1}, \boldsymbol{r}_{d} \cdot \boldsymbol{c}_{2}, \ldots, \boldsymbol{r}_{d} \cdot \boldsymbol{c}_{p}\right] }
\end{aligned}
$$

while the i-th $(i \in[d+1, m])$ row of $\boldsymbol{A B}$ is:

$$
\boldsymbol{v}_{i}=\left[\boldsymbol{r}_{i} \cdot \boldsymbol{c}_{1}, \boldsymbol{r}_{i} \cdot \boldsymbol{c}_{2}, \ldots, \boldsymbol{r}_{i} \cdot \boldsymbol{c}_{p}\right]
$$

Since \boldsymbol{r}_{i} is a linear combination of $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{d}$, there exist real values $\alpha_{1}, \ldots, \alpha_{d}$ that (i) are not all zero, and (ii) satisfy:

$$
\boldsymbol{r}_{i}=\sum_{z=1}^{d} \alpha_{z} \boldsymbol{r}_{z}
$$

This means that for any $j \in[1, p]$, we have

$$
\boldsymbol{r}_{i} \cdot \boldsymbol{c}_{j}=\sum_{z=1}^{d} \alpha_{z}\left(\boldsymbol{r}_{z} \cdot \boldsymbol{c}_{j}\right)
$$

This, in turn, indicates that

$$
\boldsymbol{v}_{i}=\sum_{z=1}^{d} \alpha_{z} \boldsymbol{v}_{z}
$$

namely, \boldsymbol{v}_{i} is a linear combination of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{d}$.
Problem 7 (Very Hard). Prove: $\operatorname{rank}(\boldsymbol{A}+\boldsymbol{B}) \leq \operatorname{rank} \boldsymbol{A}+\operatorname{rank} \boldsymbol{B}$.
Proof. Let $\boldsymbol{A}, \boldsymbol{B}$ be $m \times n$ matrices. Construct an $(2 m) \times(2 n)$ matrix:

$$
Q=\left[\begin{array}{c|c}
A & 0 \\
\hline \mathbf{0} & B
\end{array}\right]
$$

$\operatorname{rank} \boldsymbol{Q}=\operatorname{rank} \boldsymbol{A}+\operatorname{rank} \boldsymbol{B}$ (you can see this by converting \boldsymbol{Q} into row-echelon form).
Also observe that \boldsymbol{Q} has the same rank as

$$
\left[\begin{array}{c|c}
A & 0 \\
\hline A & B
\end{array}\right]
$$

which has the same rank as

$$
\left[\begin{array}{c|c}
A & A \\
\hline A & A+B
\end{array}\right]
$$

Since the rank of a submatrix cannot exceed the rank of the whole matrix, we know that $\operatorname{rank}(\boldsymbol{A}+\boldsymbol{B})$ is at most the rank of \boldsymbol{Q}, which as mentioned earlier is rank $\boldsymbol{A}+\operatorname{rank} \boldsymbol{B}$.

