Exercises: Linear Systems and Matrix Inverse

Problem 1. Consider the following linear system:

$$
\left\{\begin{array}{ccc}
x_{1}+x_{2}+x_{3}+x_{4} & =1 \\
3 x_{1}+x_{2}+x_{3}+x_{4} & =a \\
x_{2}+2 x_{3}+2 x_{4} & =3 \\
5 x_{1}+4 x_{2}+3 x_{3}+3 x_{4} & =a
\end{array}\right.
$$

Depending on the value of a, when does the system have no solution, a unique solution, and infinitely many solutions?

Problem 2. Consider the following linear system:

$$
\left\{\begin{array}{c}
2 x_{1}+x_{2}+b x_{3}=0 \\
x_{1}+x_{2}+b x_{3}=0 \\
b x_{1}+x_{2}+2 x_{3}=0
\end{array}\right.
$$

Depending on the value of b, when does the system have no solution, a unique solution, and infinitely many solutions?

Problem 3. Use Cramer's rule to solve the following linear system:

$$
\left\{\begin{array}{llc}
2 x-4 y & = & -24 \\
5 x+2 y & = & 0
\end{array}\right.
$$

Problem 4. Compute the inverse of

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Problem 5. Use the "inverse formula" to calculate the inverse of the matrix in Problem 4.
Problem 6. Compute the inverse of

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -3 & 1 \\
5 & 9 & 1
\end{array}\right]
$$

Problem 7. Let \boldsymbol{A} be an $n \times n$ matrix. Also, let \boldsymbol{I} be the $n \times n$ identity matrix. Prove: if $\boldsymbol{A}^{3}=\mathbf{0}$, then

$$
(\boldsymbol{I}-\boldsymbol{A})^{-1}=\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}
$$

Problem 8. Consider:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
2 & 1 & b \\
1 & 1 & b \\
b & 1 & 2
\end{array}\right]
$$

Under what values of b does \boldsymbol{A}^{-1} exist?

