Exercises: Linear Systems and Matrix Inverse

Problem 1. Consider the following linear system:

$$
\left\{\begin{array}{ccc}
x_{1}+x_{2}+x_{3}+x_{4} & =1 \\
3 x_{1}+x_{2}+x_{3}+x_{4} & =a \\
x_{2}+2 x_{3}+2 x_{4} & =3 \\
5 x_{1}+4 x_{2}+3 x_{3}+3 x_{4} & =a
\end{array}\right.
$$

Depending on the value of a, when does the system have no solution, a unique solution, and infinitely many solutions?

Solution. Consider the augmented matrix \tilde{A} :

$$
\tilde{\boldsymbol{A}}=\left[\begin{array}{llll|l}
1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & a \\
0 & 1 & 2 & 2 & 3 \\
5 & 4 & 3 & 3 & a
\end{array}\right]
$$

Note that the part of $\tilde{\boldsymbol{A}}$ to the left of the vertical bar is the coefficient matrix \boldsymbol{A}. We will discuss the ranks of \boldsymbol{A} and $\tilde{\boldsymbol{A}}$. For this purpose, we apply elementary row operations to convert $\tilde{\boldsymbol{A}}$ into row echelon form:

$$
\begin{aligned}
\tilde{\boldsymbol{A}} & \Rightarrow\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 1 \\
0 & -2 & -2 & -2 & a-3 \\
0 & 1 & 2 & 2 & 3 \\
0 & -1 & -2 & -2 & a-5
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 3 \\
0 & -2 & -2 & -2 & a-3 \\
0 & -1 & -2 & -2 & a-5
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 3 \\
0 & 0 & 2 & 2 & a+3 \\
0 & 0 & 0 & 0 & a-2
\end{array}\right]
\end{aligned}
$$

Now we can analyze the solutions of the linear system:

- If $a \neq 2$, then $\operatorname{rank} \tilde{\boldsymbol{A}}=4$ whereas $\operatorname{rank} \boldsymbol{A}=3$. In this case, the system has no solution.
- If $a=2$, then $\operatorname{rank} \boldsymbol{A}=\operatorname{rank} \tilde{\boldsymbol{A}}=3$, which is smaller than the number 4 of variables. Hence, the system has infinitely many solutions.

It is worth mentioning that, regardless of the value of a, the linear system never has a unique solution.

Problem 2. Consider the following linear system:

$$
\left\{\begin{array}{c}
2 x_{1}+x_{2}+b x_{3}=0 \\
x_{1}+x_{2}+b x_{3}=0 \\
b x_{1}+x_{2}+2 x_{3}=0
\end{array}\right.
$$

Depending on the value of b, when does the system have no solution, a unique solution, and infinitely many solutions?

Solution. Consider the augmented matrix \tilde{A} :

$$
\tilde{\boldsymbol{A}}=\left[\begin{array}{lll|l}
2 & 1 & b & 0 \\
1 & 1 & b & 0 \\
b & 1 & 2 & 0
\end{array}\right]
$$

Again, the part of $\tilde{\boldsymbol{A}}$ to the left of the vertical bar is the coefficient matrix \boldsymbol{A}.
If $b=0$, then

$$
\begin{aligned}
\tilde{\boldsymbol{A}} & =\left[\begin{array}{lll|l}
2 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc|c}
2 & 1 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 1 & 2 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc|c}
2 & 1 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]
\end{aligned}
$$

Hence, the system has a unique solution.
Next we consider that $b \neq 0$.

$$
\begin{aligned}
\tilde{\boldsymbol{A}} & \Rightarrow\left[\begin{array}{ccc|c}
b & 1 & 2 & 0 \\
2 & 1 & b & 0 \\
1 & 1 & b & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc|c}
b & 1 & 2 & 0 \\
b & b / 2 & b^{2} / 2 & 0 \\
b & b & b^{2} & 0
\end{array}\right]
\end{aligned}
$$

(Note that we multiplied the 2 nd row by $b / 2$, and the 3 rd one by b.
These are elementary row operations because $b \neq 0$.)

$$
\begin{align*}
& \Rightarrow\left[\begin{array}{ccc|c}
b & 1 & 2 & 0 \\
0 & b / 2-1 & b^{2} / 2-2 & 0 \\
0 & b-1 & b^{2}-2 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc|c}
b & 1 & 2 & 0 \\
0 & b-2 & b^{2}-4 & 0 \\
0 & b-1 & b^{2}-2 & 0
\end{array}\right] \tag{1}
\end{align*}
$$

If $b=2$, then

$$
(1) \Rightarrow\left[\begin{array}{lll|l}
2 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 2 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{lll|l}
2 & 1 & 2 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Hence, the system has infinitely many solutions.

If, on the other hand, $b=1$, then

$$
(1) \Rightarrow\left[\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Hence, the system has a unique solution.
Next, we consider that $b \neq 0,1,2$. In this case:

$$
\begin{aligned}
(1) & \Rightarrow\left[\begin{array}{ccc|c}
b & 1 & 2 & 0 \\
0 & 1 & b+2 & 0 \\
0 & b-1 & b^{2}-2 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc|c}
b & 1 & 2 & 0 \\
0 & b-1 & (b+2)(b-1) & 0 \\
0 & b-1 & b^{2}-2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc|c}
b & 1 & 2 & 0 \\
0 & b-1 & b^{2}+b-2 & 0 \\
0 & b-1 & b^{2}-2 & 0
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc|c}
b & 1 & 2 & 0 \\
0 & b-1 & b^{2}+b-2 & 0 \\
0 & 0 & -b & 0
\end{array}\right]
\end{aligned}
$$

Clearly, (as $b \neq 0$) the above matrix has rank 3 ; therefore, the linear system has a unique solution.
In summary, when $b=2$, the original linear system has infinitely many solutions. For any other value of b, the system has a unique solution.

Problem 3. Use Cramer's rule to solve the following linear system:

$$
\left\{\begin{array}{ccc}
2 x-4 y & = & -24 \\
5 x+2 y & = & 0
\end{array}\right.
$$

Solution. The coefficient matrix equals

$$
\boldsymbol{A}=\left[\begin{array}{cc}
2 & -4 \\
5 & 2
\end{array}\right]
$$

Since $\operatorname{det}(\boldsymbol{A})=24 \neq 0$, the system has a unique solution. Define:

$$
\boldsymbol{A}_{1}=\left[\begin{array}{cc}
-24 & -4 \\
0 & 2
\end{array}\right], \boldsymbol{A}_{2}=\left[\begin{array}{cc}
2 & -24 \\
5 & 0
\end{array}\right]
$$

By Cramer's rule, we have:

$$
\begin{aligned}
& x=\frac{\operatorname{det}\left(\boldsymbol{A}_{1}\right)}{\operatorname{det}(\boldsymbol{A})}=\frac{-48}{24}=-2 \\
& y=\frac{\operatorname{det}\left(\boldsymbol{A}_{2}\right)}{\operatorname{det}(\boldsymbol{A})}=\frac{120}{24}=5 .
\end{aligned}
$$

Problem 4. Compute the inverse of

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Solution. We apply Gauss-Jordan elimination. Specifically, we start with

$$
\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \tag{2}\\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and convert the left hand side of the vertical bar into an identity matrix using elementary row operations.

$$
(2) \Rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

Now, what remains on the right hand side of the bar is the inverse of \boldsymbol{A}, namely:

$$
\boldsymbol{A}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Remark: Note that $\boldsymbol{A}=\boldsymbol{A}^{-1}$. In other words, $\boldsymbol{A}=\boldsymbol{A}^{-1}$ does not imply that \boldsymbol{A} is an identity matrix.

Problem 5. Use the "inverse formula" to calculate the inverse of the matrix in Problem 4.
Solution. We have: $\operatorname{det}(\boldsymbol{A})=-1$. Also:

$$
\begin{aligned}
& \boldsymbol{M}_{11}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \text { and thus } C_{11}=-1 \\
& \boldsymbol{M}_{12}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \text { and } C_{12}=0 \\
& \boldsymbol{M}_{13}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \text { and } C_{13}=0 \\
& \boldsymbol{M}_{21}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \text { and } C_{21}=0 \\
& \boldsymbol{M}_{22}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \text { and } C_{22}=0 \\
& \left.\boldsymbol{M}_{23}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \text { and } C_{23}=-1 \text { (the minus sign is from }(-1)^{2+3}\right) \\
& \boldsymbol{M}_{31}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \text { and } C_{31}=0 \\
& \left.\boldsymbol{M}_{32}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \text { and } C_{32}=-1 \text { (the minus sign is from }(-1)^{3+2}\right) \\
& \boldsymbol{M}_{33}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \text { and } C_{33}=0
\end{aligned}
$$

Therefore, we have:

$$
\begin{aligned}
\boldsymbol{A}^{-1} & =\frac{1}{\operatorname{det}(\boldsymbol{A})}\left[\begin{array}{lll}
C_{11} & C_{21} & C_{31} \\
C_{12} & C_{22} & C_{32} \\
C_{13} & C_{23} & C_{33}
\end{array}\right] . \\
& =(-1)\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] .
\end{aligned}
$$

Problem 6. Compute the inverse of

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -3 & 1 \\
5 & 9 & 1
\end{array}\right]
$$

Solution. We apply Gauss-Jordan elimination:

$$
\begin{aligned}
\boldsymbol{A} & \Rightarrow\left[\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
-2 & -3 & 1 & 0 & 1 & 0 \\
5 & 9 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 3 & 2 & 1 & 0 \\
0 & -1 & -4 & -5 & 0 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 3 & 2 & 1 & 0 \\
0 & 0 & -1 & -3 & 1 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{lll|l|ll}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 3 & 2 & 1 & 0 \\
0 & 0 & 1 & 3 & -1 & -1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{lll|lll}
1 & 2 & 0 & -2 & 1 & 1 \\
0 & 1 & 0 & -7 & 4 & 3 \\
0 & 0 & 1 & 3 & -1 & -1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 12 & -7 & -5 \\
0 & 1 & 0 & -7 & 4 & 3 \\
0 & 0 & 1 & 3 & -1 & -1
\end{array}\right]
\end{aligned}
$$

Now, what remains on the right hand side of the bar is the inverse of \boldsymbol{A}, namely:

$$
\boldsymbol{A}^{-1}=\left[\begin{array}{ccc}
12 & -7 & -5 \\
-7 & 4 & 3 \\
3 & -1 & -1
\end{array}\right]
$$

Problem 7. Let \boldsymbol{A} be an $n \times n$ matrix. Also, let \boldsymbol{I} be the $n \times n$ identity matrix. Prove: if $\boldsymbol{A}^{3}=\mathbf{0}$, then

$$
(\boldsymbol{I}-\boldsymbol{A})^{-1}=\boldsymbol{I}+\boldsymbol{A}+\boldsymbol{A}^{2}
$$

Proof.

$$
(I-A)\left(I+A+A^{2}\right)=\boldsymbol{I}^{2}-\boldsymbol{A}+\boldsymbol{A}-\boldsymbol{A}^{2}+\boldsymbol{A}^{2}-\boldsymbol{A}^{3}=\boldsymbol{I}
$$

which completes the proof.
Problem 8. Consider:

$$
\boldsymbol{A}=\left[\begin{array}{lll}
2 & 1 & b \\
1 & 1 & b \\
b & 1 & 2
\end{array}\right]
$$

Under what values of b does \boldsymbol{A}^{-1} exist?
Solution. We know that \boldsymbol{A}^{-1} exists if and only if $\operatorname{det}(\boldsymbol{A}) \neq 0$.

$$
\begin{aligned}
\operatorname{det}(\boldsymbol{A}) & =\left|\begin{array}{lll}
2 & 1 & b \\
1 & 1 & b \\
b & 1 & 2
\end{array}\right| \\
& =2\left|\begin{array}{ll}
1 & b \\
1 & 2
\end{array}\right|-1\left|\begin{array}{cc}
1 & b \\
b & 2
\end{array}\right|+b\left|\begin{array}{ll}
1 & 1 \\
b & 1
\end{array}\right| \\
& =2(2-b)-\left(2-b^{2}\right)+b(1-b) \\
& =2-b .
\end{aligned}
$$

Therefore, \boldsymbol{A}^{-1} exists if and only if $b \neq 2$.

