Exercises: Eigenvalues and Eigenvectors

Problem 1. Find all the eigenvalues and eigenvectors of $\boldsymbol{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$.
Problem 2. Let \boldsymbol{A} be an $n \times n$ square matrix. Prove: \boldsymbol{A} and \boldsymbol{A}^{T} have exactly the same eigenvalues.
Problem 3 (Hard). Let \boldsymbol{A} be an $n \times n$ square matrix. Prove: \boldsymbol{A}^{-1} exists if and only if 0 is not an eigenvalue of \boldsymbol{A}.

Problem 4. Let \boldsymbol{A} be an $n \times n$ square matrix such that \boldsymbol{A}^{-1} exists. Prove: if λ is an eigenvalue of \boldsymbol{A}, then $1 / \lambda$ is an eigenvalue of \boldsymbol{A}^{-1}.

Problem 5. Prove: if $\boldsymbol{A}^{2}=\boldsymbol{I}$, then the eigenvalues of \boldsymbol{A} must be 1 or -1 .
Problem 6. Suppose that λ_{1} and λ_{2} are two distinct eigenvalues of matrix \boldsymbol{A}. Furthermore, suppose that \boldsymbol{x}_{1} is an eigenvector of \boldsymbol{A} under λ_{1}, and that \boldsymbol{x}_{2} is an eigenvector of \boldsymbol{A} under λ_{2}. Prove: there does not exist any real number c such that $c \boldsymbol{x}_{1}=\boldsymbol{x}_{2}$.

Problem 7. Suppose that λ_{1} and λ_{2} are two distinct eigenvalues of matrix \boldsymbol{A}. Furthermore, suppose that \boldsymbol{x}_{1} is an eigenvector of \boldsymbol{A} under λ_{1}, and that \boldsymbol{x}_{2} is an eigenvector of \boldsymbol{A} under λ_{2}. Prove: $\boldsymbol{x}_{1}+\boldsymbol{x}_{2}$ is not an eigenvector of \boldsymbol{A}.

